MHB Positive Definite Matrices and Their Properties

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrices Positive
AI Thread Summary
The discussion focuses on proving that both XX^T and X^TX are positive semidefinite for a matrix X in R^(d×n). It establishes that if X has rank d, then XX^T is positive definite and invertible. The proof involves showing that for any vector x, the expressions x^T(XX^T)x and (Xx)^T(Xx) yield non-negative results, confirming the positive semidefiniteness. The conversation also clarifies the distinction between the dimensions of x when applying these properties to X^TX. Overall, the participants engage in a mathematical exploration of matrix properties and seek guidance on specific proof steps.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

1. Prove that if X ∈ R^(d×n) then XX^T and X^TX are both positive semidefinite.
6. Prove that if X ∈ R^(d×n) has rank d, then XX^T is positive definite (invertible).

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
For all $x\in\mathbb{R}^{d\times 1}:$
$$x^T(XX^T)x=(X^Tx)^T(X^Tx)=(y_1,\ldots,y_n) \begin{pmatrix}{y_1}\\{\vdots}\\{y_n}\end{pmatrix}=y_1^2+\ldots+y_n^2\geq 0$$
which implies $XX^T$ is positive semidefinite (or positive definite). Similar arguments for $X^TX$.

If $\text{rank }X=d$, then $\text{rank }(XX^T)=\text{rank }X=d$, which implies $XX^T$ is invertible. This means that $XX^T$ is congruent to a matrix $\text{diag }(\alpha_1,\ldots,\alpha_d)$ with $\alpha_i>0$ for all $i$, as a consequence $XX^T$ is positive definite
 
When I try to solve the case for XTX I get stuck at the following:
xT(XTX)x = xTXTXx = (Xx)TXx

Please kindly guide me next step.
 
MrJava said:
When I try to solve the case for XTX I get stuck at the following: xT(XTX)x = xTXTXx = (Xx)TXx

Right. Now, the difference is that $x\in \mathbb{R}^{n\times 1}$ instead of $\mathbb{R}^{d\times 1}.$ So, for all $x\in \mathbb{R}^{n\times 1}$
$$(Xx)^T(Xx)=(w_1,\ldots,w_d) \begin{pmatrix}{w_1}\\{\vdots}\\{w_d}\end{pmatrix} =w_1^2+\ldots+w_d^2\geq 0$$
 
Fernando Revilla said:
Right. Now, the difference is that $x\in \mathbb{R}^{n\times 1}$ instead of $\mathbb{R}^{d\times 1}.$ So, for all $x\in \mathbb{R}^{n\times 1}$
$$(Xx)^T(Xx)=(w_1,\ldots,w_d) \begin{pmatrix}{w_1}\\{\vdots}\\{w_d}\end{pmatrix} =w_1^2+\ldots+w_d^2\geq 0$$

Ok I get the point, thank you.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top