- #1
kalish1
- 99
- 0
Given the following dynamical model (system of ODEs):
\begin{array}
$
\frac{dA}{dt}=\Lambda-\mu A-\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{A}{N} \\
\frac{dB}{dt}=\tau(B+D)\frac{A}{N}-\beta(C+D+E+F)\frac{B}{N}-(\mu+\mu_T)B, \\
\frac{dC}{dt}=\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{C}{N}-(\mu+\mu_A)C, \\
\frac{dD}{dt}=\beta(C+D+E+F)\frac{B}{N}+\tau(B+D)\frac{C}{N}-(\mu+\mu_T+\mu_A+\lambda_T)D, \\
\frac{dE}{dt}=\lambda_TD-(\mu+\mu_A+\rho_1+\eta_1)E, \\
\frac{dF}{dt}=\rho_1E-(\mu+\mu_A+\rho_2+\eta_2)F, \\
\frac{dG}{dt}=\eta_1E-(\mu+\rho_1+\gamma)G, \\
\frac{dH}{dt}=\eta_2H+\rho_1G-(\mu+\rho_2+\frac{\gamma\rho_1}{\rho_1+\rho_2})H, \\
%,$
\end{array}
where $\mu, \beta, \tau, \mu_T, \mu_A, \gamma, \lambda_T, \eta_1, \eta_2, \rho_1, \rho_2 >0 \\$ and $A(0), B(0), C(0), D(0), E(0), F(0), G(0), H(0)>0,$
is it possible to show simply that $A(t),B(t),C(t),D(t),E(t),F(t),G(t),H(t) > 0?$
Or should I follow sections $II$ (Mathematical Formulation) and $III$ (Methodology) in this paper: http://www.iosrjournals.org/iosr-jm/papers/Vol5-issue5/G0554652.pdf
?
I have crossposted this question here: http://math.stackexchange.com/questions/1106786/positivity-of-compartments-in-epidemiological-model
\begin{array}
$
\frac{dA}{dt}=\Lambda-\mu A-\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{A}{N} \\
\frac{dB}{dt}=\tau(B+D)\frac{A}{N}-\beta(C+D+E+F)\frac{B}{N}-(\mu+\mu_T)B, \\
\frac{dC}{dt}=\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{C}{N}-(\mu+\mu_A)C, \\
\frac{dD}{dt}=\beta(C+D+E+F)\frac{B}{N}+\tau(B+D)\frac{C}{N}-(\mu+\mu_T+\mu_A+\lambda_T)D, \\
\frac{dE}{dt}=\lambda_TD-(\mu+\mu_A+\rho_1+\eta_1)E, \\
\frac{dF}{dt}=\rho_1E-(\mu+\mu_A+\rho_2+\eta_2)F, \\
\frac{dG}{dt}=\eta_1E-(\mu+\rho_1+\gamma)G, \\
\frac{dH}{dt}=\eta_2H+\rho_1G-(\mu+\rho_2+\frac{\gamma\rho_1}{\rho_1+\rho_2})H, \\
%,$
\end{array}
where $\mu, \beta, \tau, \mu_T, \mu_A, \gamma, \lambda_T, \eta_1, \eta_2, \rho_1, \rho_2 >0 \\$ and $A(0), B(0), C(0), D(0), E(0), F(0), G(0), H(0)>0,$
is it possible to show simply that $A(t),B(t),C(t),D(t),E(t),F(t),G(t),H(t) > 0?$
Or should I follow sections $II$ (Mathematical Formulation) and $III$ (Methodology) in this paper: http://www.iosrjournals.org/iosr-jm/papers/Vol5-issue5/G0554652.pdf
?
I have crossposted this question here: http://math.stackexchange.com/questions/1106786/positivity-of-compartments-in-epidemiological-model