- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the triangle ABC with $c=18$, $\alpha=\frac{\pi}{6}$ and the median through $C$ has the length $5$. I want to determine all the possibilities for $a$ and $\gamma$.
I have done the following:
From the median we have the following:
$$m_c=\sqrt{\frac{2a^2+2b^2-c^2}{4}}\Rightarrow m_c^2=\frac{2a^2+2b^2-c^2}{4} \Rightarrow 4m_c^2=2a^2+2b^2-c^2 \\ \Rightarrow 4\cdot 25=2a^2+2b^2-18^2 \Rightarrow 2a^2+2b^2=100+324 \Rightarrow 2a^2+2b^2=424 \\ \Rightarrow a^2+b^2=212 \Rightarrow b^2=212-a^2$$
From the cosine law we have that \begin{align*}&a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos \alpha \\ & \Rightarrow a^2=212-a^2+c^2-2\sqrt{212-a^2}\cdot c\cdot \frac{\sqrt{3}}{2} \\ & \Rightarrow 2a^2=212+324-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 2a^2=536-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow a^2=268-9\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 9\sqrt{3}\sqrt{212-a^2}=268-a^2 \\ & \Rightarrow \left (9\sqrt{3}\sqrt{212-a^2}\right )^2=\left (268-a^2\right )^2 \\ & \Rightarrow 81\cdot 3\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 243\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 51516-243a^2=71824-536a^2+a^4 \\ & \Rightarrow a^4-293a^2+20308=0 \\ & \Rightarrow \left (a^2\right )^2-293\left (a^2\right )+20308=0 \\ & \Rightarrow a^2=\frac{-(-293)\pm \sqrt{(-293)^2-4\cdot 1\cdot 20308}}{2\cdot 1} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{85849 -81232 }}{2} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{4617 }}{2} \\ & \Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ & \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}\end{align*}
From the sine law we have that \begin{align*}&\frac{\sin\alpha}{a}=\frac{\sin \gamma}{c} \\ & \Rightarrow c\sin \alpha=a\sin \gamma \\ & \Rightarrow 18\cdot \frac{1}{2}=a\sin \gamma \\ & \Rightarrow a\sin \gamma=9 \\ & \Rightarrow \sin \gamma=\frac{9}{a} \\ & \Rightarrow \gamma =\arcsin \left (\frac{9}{a} \right ) \ \text{ with } \ a=\frac{293+ 9\sqrt{57}}{2} \ \text{ and } \ a=\frac{293- 9\sqrt{57}}{2}\end{align*} Is everything correct? Could I improve something? (Wondering)
We have the triangle ABC with $c=18$, $\alpha=\frac{\pi}{6}$ and the median through $C$ has the length $5$. I want to determine all the possibilities for $a$ and $\gamma$.
I have done the following:
From the median we have the following:
$$m_c=\sqrt{\frac{2a^2+2b^2-c^2}{4}}\Rightarrow m_c^2=\frac{2a^2+2b^2-c^2}{4} \Rightarrow 4m_c^2=2a^2+2b^2-c^2 \\ \Rightarrow 4\cdot 25=2a^2+2b^2-18^2 \Rightarrow 2a^2+2b^2=100+324 \Rightarrow 2a^2+2b^2=424 \\ \Rightarrow a^2+b^2=212 \Rightarrow b^2=212-a^2$$
From the cosine law we have that \begin{align*}&a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos \alpha \\ & \Rightarrow a^2=212-a^2+c^2-2\sqrt{212-a^2}\cdot c\cdot \frac{\sqrt{3}}{2} \\ & \Rightarrow 2a^2=212+324-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 2a^2=536-18\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow a^2=268-9\sqrt{3}\sqrt{212-a^2} \\ & \Rightarrow 9\sqrt{3}\sqrt{212-a^2}=268-a^2 \\ & \Rightarrow \left (9\sqrt{3}\sqrt{212-a^2}\right )^2=\left (268-a^2\right )^2 \\ & \Rightarrow 81\cdot 3\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 243\cdot \left (212-a^2\right )=71824-536a^2+a^4 \\ & \Rightarrow 51516-243a^2=71824-536a^2+a^4 \\ & \Rightarrow a^4-293a^2+20308=0 \\ & \Rightarrow \left (a^2\right )^2-293\left (a^2\right )+20308=0 \\ & \Rightarrow a^2=\frac{-(-293)\pm \sqrt{(-293)^2-4\cdot 1\cdot 20308}}{2\cdot 1} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{85849 -81232 }}{2} \\ & \Rightarrow a^2=\frac{293\pm \sqrt{4617 }}{2} \\ & \Rightarrow a^2=\frac{293\pm 9\sqrt{57}}{2} \\ & \Rightarrow a=\frac{293\pm 9\sqrt{57}}{2}\end{align*}
From the sine law we have that \begin{align*}&\frac{\sin\alpha}{a}=\frac{\sin \gamma}{c} \\ & \Rightarrow c\sin \alpha=a\sin \gamma \\ & \Rightarrow 18\cdot \frac{1}{2}=a\sin \gamma \\ & \Rightarrow a\sin \gamma=9 \\ & \Rightarrow \sin \gamma=\frac{9}{a} \\ & \Rightarrow \gamma =\arcsin \left (\frac{9}{a} \right ) \ \text{ with } \ a=\frac{293+ 9\sqrt{57}}{2} \ \text{ and } \ a=\frac{293- 9\sqrt{57}}{2}\end{align*} Is everything correct? Could I improve something? (Wondering)