- #1
Rayan
- 17
- 1
- Homework Statement
- The Hamiltonian for a two level system with the orthonormal states |1⟩ and |2⟩ is given by:
- Relevant Equations
- H = a|1⟩⟨1| + b|1⟩⟨2| + b|2⟩⟨1| + c|2⟩⟨2| ,
where a,b and c are real constants with energy unit.
So first I rewrote H as a matrix:
$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$
And tried to find the eigenvalues/energies of H, so I solved
$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$
but got a complicated solution
$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$
What am I doing wrong here?
$$ H =
\begin{pmatrix}
a & b \\
b & c
\end{pmatrix} $$
And tried to find the eigenvalues/energies of H, so I solved
$$ det (H - \lambda I ) =
\begin{vmatrix}
a-\lambda & b \\
b & c-\lambda
\end{vmatrix} = (a-\lambda)(c-\lambda) - b^2 = ac - a\lambda - c\lambda + \lambda^2 - b^2 = 0
$$
but got a complicated solution
$$ \lambda = \frac{a+c}{2} \pm \sqrt{ ( \frac{a+c}{2} )^2 - (ac-b^2) } $$
What am I doing wrong here?
Last edited: