- #1
physicszman
- 39
- 0
Please double check my work !
Hi, I basically did out all the poroblems. I just need someone to double check whether I made any mistakes in the answers or procedures. (My prof is a real dickhead and marks down for the smallest mistake) Also can I simplify any answers, just like obvious stuff?
Thanks for the help!
1)
f(x) = x / (400-x)
f'(x) = (400-x)(1) - (-1)(x) / (400-x)^2
f'(x) = (400-x+x) / (400-x)^2
f'(x) = 400 / (400-x)^2
2)
g(x) = (2x+3)/(x-5)
g'(x) = (x-5)(2)-(1)(2x+3) / (x-5)^2
g'(x) = (2x-10-2x-3) / (x-5)^2
g'(x) = -13 / (x-5)^2
3)
y = (3x-4)/(x^3+1)
y' = (x^3+1)(3x)-(3x^2)(3x-4) / (x^3+1)^2
y' = [(3x^4+3x)-9x^3+12x^2] / (x^3+1)^2
y' = (3x^4-9x^3+12x^2+3x) / (x^3+1)^2
4)
f(x) = (3x^2+2x) / x^5
f'(x) = (x^5)(6x+2)-(5x^4)(3x^2+2x) / (x^5)^2
f'(x) = (6x^6+2x^5-15x^6-10x^5) / (x^5)^2
f'(x) = (-9x^6-8x^5) / (x^5)^2
5)
h(x) = sqrt(3+2x)
h(x) = (3+2x)^(1/2)
h'(x) = 1/2(3+2x)^(-1/2)(2)
6)
y = (x^4-4x^2+x)^-5
y' = -5(x^4-4x^2+x)^-6(4x^3-8x+1)
7)
y = (x)sqrt(3x+4)
y' = (x)1/2(3x+4)^(-1/2)(3)(sqrt(3x+4))
8)
f(x) = x^3 + (100-x)^2
f'(x) = 3x^2 + 2(100-x)(-1)
9)
y = 1 / (x+2)^2
y = (1)(x+2)^-2
y'= -2(x+2)^-3(1)
y'= 1/(-2(x+2)^3)
10)
h(x) = 1 + sqrt(x) / (x^5+3)
h'(x) = (x^5+3)(1+1/2(x)^(-1/2))-5x^4(1 + sqrt(x)) / (x^5+3)^2
11)
g(x) = (x-4)^8 * (x+3)^9
g'(x) = (x-4)^8 * 9(x+3)^8 + 8(x-4)^7 * (x+3)^9
12)
f(x) = sqrt((3+x)/(2-x))
f'(x) = 1/2(((3+x)/(2-x))^-1/2 * (((2-x) + (3+x)) / (2-x)^2)
13) Find the 3rd derivative
y = 8x^2 - 4x + 7
3rd derivative does not exist because highest power is 2.
14) Find the 3rd derivative
f(x) = x^3 + 3/x
f'(x) = 3x^2 + (-3)
f'(x) = 6x
f'(x) = 6
Hi, I basically did out all the poroblems. I just need someone to double check whether I made any mistakes in the answers or procedures. (My prof is a real dickhead and marks down for the smallest mistake) Also can I simplify any answers, just like obvious stuff?
Thanks for the help!
1)
f(x) = x / (400-x)
f'(x) = (400-x)(1) - (-1)(x) / (400-x)^2
f'(x) = (400-x+x) / (400-x)^2
f'(x) = 400 / (400-x)^2
2)
g(x) = (2x+3)/(x-5)
g'(x) = (x-5)(2)-(1)(2x+3) / (x-5)^2
g'(x) = (2x-10-2x-3) / (x-5)^2
g'(x) = -13 / (x-5)^2
3)
y = (3x-4)/(x^3+1)
y' = (x^3+1)(3x)-(3x^2)(3x-4) / (x^3+1)^2
y' = [(3x^4+3x)-9x^3+12x^2] / (x^3+1)^2
y' = (3x^4-9x^3+12x^2+3x) / (x^3+1)^2
4)
f(x) = (3x^2+2x) / x^5
f'(x) = (x^5)(6x+2)-(5x^4)(3x^2+2x) / (x^5)^2
f'(x) = (6x^6+2x^5-15x^6-10x^5) / (x^5)^2
f'(x) = (-9x^6-8x^5) / (x^5)^2
5)
h(x) = sqrt(3+2x)
h(x) = (3+2x)^(1/2)
h'(x) = 1/2(3+2x)^(-1/2)(2)
6)
y = (x^4-4x^2+x)^-5
y' = -5(x^4-4x^2+x)^-6(4x^3-8x+1)
7)
y = (x)sqrt(3x+4)
y' = (x)1/2(3x+4)^(-1/2)(3)(sqrt(3x+4))
8)
f(x) = x^3 + (100-x)^2
f'(x) = 3x^2 + 2(100-x)(-1)
9)
y = 1 / (x+2)^2
y = (1)(x+2)^-2
y'= -2(x+2)^-3(1)
y'= 1/(-2(x+2)^3)
10)
h(x) = 1 + sqrt(x) / (x^5+3)
h'(x) = (x^5+3)(1+1/2(x)^(-1/2))-5x^4(1 + sqrt(x)) / (x^5+3)^2
11)
g(x) = (x-4)^8 * (x+3)^9
g'(x) = (x-4)^8 * 9(x+3)^8 + 8(x-4)^7 * (x+3)^9
12)
f(x) = sqrt((3+x)/(2-x))
f'(x) = 1/2(((3+x)/(2-x))^-1/2 * (((2-x) + (3+x)) / (2-x)^2)
13) Find the 3rd derivative
y = 8x^2 - 4x + 7
3rd derivative does not exist because highest power is 2.
14) Find the 3rd derivative
f(x) = x^3 + 3/x
f'(x) = 3x^2 + (-3)
f'(x) = 6x
f'(x) = 6