- #1
juantheron
- 247
- 1
Evaluation of \(\displaystyle \displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx\)
What I have Tried:: Let \(\displaystyle \displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx\)
So \(\displaystyle \displaystyle I = \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{(\cos x)^{4018}\left[1+(\tan x)^{2009}\right]}\cdot 2^{2008}\cdot (\sin x)^{2008}\cdot (\cos x)^{208}dx\)
So $\displaystyle I = 2^{2008}\int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)\cdot (\tan x)^{2008}\cdot \sec^2 x}{\left[1+(\tan x)^{2009}\right]^2}dx\;,$
Now put $\tan x= t$ and $\sec^2 dx = dt$ and changing Limits , We get
$\displaystyle I = -2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$
Now How can I solve after that, Help me
Thanks
What I have Tried:: Let \(\displaystyle \displaystyle \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{\left[(\sin x)^{2009}+(\cos x)^{2009}\right]^2}\cdot (\sin 2x)^{2008}dx\)
So \(\displaystyle \displaystyle I = \int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)}{(\cos x)^{4018}\left[1+(\tan x)^{2009}\right]}\cdot 2^{2008}\cdot (\sin x)^{2008}\cdot (\cos x)^{208}dx\)
So $\displaystyle I = 2^{2008}\int_{0}^{\frac{\pi}{4}}\frac{\ln(\cot x)\cdot (\tan x)^{2008}\cdot \sec^2 x}{\left[1+(\tan x)^{2009}\right]^2}dx\;,$
Now put $\tan x= t$ and $\sec^2 dx = dt$ and changing Limits , We get
$\displaystyle I = -2^{2008}\int_{0}^{1}\frac{\ln (t)\cdot t^{2008}}{[1+t^{2009}]^2}dt$
Now How can I solve after that, Help me
Thanks