Possible to use work-energy theorem from a non-inertial frame?

AI Thread Summary
The discussion centers on the application of the work-energy theorem in non-inertial reference frames, specifically regarding a wheel rolling down an inclined plane. While the initial solution is framed from the ground, questions arise about performing calculations from the center of mass, which is an accelerating frame. It is clarified that while the center of mass frame is non-inertial, calculations can still be performed by accounting for the work done by inertia forces and friction. The static friction does not perform work in the ground frame but does in the moving frame. Thus, it is indeed possible to analyze the problem from the center of mass frame with the appropriate considerations.
zenterix
Messages
774
Reaction score
84
Homework Statement
Consider a wheel of mass m and radius R rolling down a plane inclined at an angle ϕrelative to the horizontal ground. The wheel starts at rest, and does not slip. What is the velocity of the wheel after it has rolled down a height of h?
Relevant Equations
Here is a solution:
$$E_{m_i}=mgh$$

$$E_{m_f}=\frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$v_{cm,f}=R\omega$$

No non-conservative forces do any work on the system (in particular static friction) so mechanical energy is conserved.

$$E_{m_i}=E_{m_f}$$

$$\implies mgh= \frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$\implies v_{cm_f}=\sqrt{\frac{2mgh}{m+\frac{I_{cm}}{R^2}}}$$
In learning about translational and rotational motion, I solved a problem involving a wheel rolling down an inclined plane without slipping.

There are multiple ways to solve this problem, but I want to focus on solutions using energy.

Now to my questions. The reference frame in the posted solution is the ground, correct?

Is it possible to perform this calculation from the frame of the center of mass?

I'm going to guess no because the center of mass is accelerating due to gravity. It is not an inertial reference frame. Is this correct? I just wanted to be sure.
 
Physics news on Phys.org
zenterix said:
Homework Statement:: Consider a wheel of mass m and radius R rolling down a plane inclined at an angle ϕrelative to the horizontal ground. The wheel starts at rest, and does not slip. What is the velocity of the wheel after it has rolled down a height of h?
Relevant Equations:: Here is a solution:
$$E_{m_i}=mgh$$

$$E_{m_f}=\frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$v_{cm,f}=R\omega$$

No non-conservative forces do any work on the system (in particular static friction) so mechanical energy is conserved.

$$E_{m_i}=E_{m_f}$$

$$\implies mgh= \frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$\implies v_{cm_f}=\sqrt{\frac{2mgh}{m+\frac{I_{cm}}{R^2}}}$$

Is it possible to perform this calculation from the frame of the center of mass?
Yes it is possible but you must take into account a work done by the inertia forces and moreover a work done by friction. The friction does not work relative the ground frame but it do work relative moving frame. Even if the frame moves with constant velocity
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top