- #1
alexmahone
- 304
- 0
Find all prime numbers p for which p!+p is a perfect square.
My thoughts: 2!+2 and 3!+3 are perfect squares.
p!+p=p[(p-1)!+1]
By Wilson's theorem, (p-1)!+1 is divisible by p. Now I'm stuck.
My thoughts: 2!+2 and 3!+3 are perfect squares.
p!+p=p[(p-1)!+1]
By Wilson's theorem, (p-1)!+1 is divisible by p. Now I'm stuck.
Last edited: