- #1
Guillem_dlc
- 188
- 17
- Homework Statement
- A metallic sphere of radius ##R=3,0\, \textrm{cm}## is located concentrically inside a spherical crust also metallic of inner radius ##R_i=10\, \textrm{cm}## and outer radius ##R_e=12\, \textrm{cm}##. The sphere has a charge ##Q_1=+1,2\, \textrm{nC}## and the clean charge of the crust is ##Q_2=+6\, \textrm{nC}##. Calculate:
a) The charge on the inner and outer surfaces of the crust.
b) Sphere potential and crustal potential (consider ##V_\infty=0##)
The bark is then connected to the ground. Calculate:
c) The charge of the sphere and that of the outer and inner surfaces of the crust.
d) Sphere potential and crustal potencial.
Sol: a) ##Q_{2i}=-1,2\, \textrm{nC}##; ##Q_{2e}=+7,2\, \textrm{nC}##
b) ##V_{\textrm{crustal}} = 540\, \textrm{V}##; ##V_{\textrm{sphere}}=790\, \textrm{V}##
c) ##Q_1=+1,2\, \textrm{nC}##; ##Q_{2i}=-1,2\, \textrm{nC}##; ##Q_{2e}=0##
d) ##V_{\textrm{crustal}}=0##; ##V_{\textrm{sphere}}=250\, \textrm{V}##
- Relevant Equations
- Total influence theorem (a)
a) We know that ##Q_1=1,2\, \textrm{nC}## and ##Q_2=6\, \textrm{nC}##. By the TOTAL influence theorem:
$$-Q_1=Q_{2i}=-1,2\, \textrm{nC}$$
$$Q_2=Q_{2i}+Q_{2e}\rightarrow Q_{2e}=7,2\, \textrm{nC}$$
b) Electric potential difference crust:
$$V_A-V_\infty=$$
How was this potential difference thing going?