Potential due to a finite charged wire

AI Thread Summary
The discussion focuses on calculating the electric potential at point O due to a finite charged wire configuration. The potential contributions from the leftmost, semicircular, and rightmost sections of the wire are derived using integrals, leading to a total potential expression of V(O) = (λ(π + ln(9))) / (4πε₀). Symmetry is highlighted, confirming that the left and right straight sections yield equal potential at point O. A correction was made in the calculations, thanks to input from another user. The conversation emphasizes the importance of symmetry in electric potential calculations.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A wire of finite length has linear positive charge density ##\lambda##
What is the potential at point O?
Relevant Equations
##V(r)=\frac{q}{4\pi\varepsilon_0 r}##
Considering a reference frame with ##x=0## at the leftmost point I have for the leftmost piece of wire: ##\int_{x=0}^{x=2R}\frac{\lambda dx}{4\pi\varepsilon_0 (3R-x)}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}##.
The potential at O due to the semicircular piece of wire at the center is ##\int_{\theta=0}^{\theta=\pi}\frac{\lambda Rd\theta}{4\pi\varepsilon_0 R}=\frac{\lambda}{4\varepsilon_0}##.
The potential at O due to the rightmost piece of wire is, by symmetry, the same as that due to the leftmost piece of wire ##(\int_{x=R}^{x=3R}\frac{\lambda dx}{4\pi\varepsilon_0 x}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}).##

So, the total potential at O is ##V(O)=2\frac{\lambda ln(3)}{4\pi\varepsilon_0}+\frac{\lambda}{4\varepsilon_0}=\frac{\lambda(\pi+ln(9))}{4\pi\varepsilon_0}##.

Does this make sense? Thanks
 

Attachments

  • potential_wire.png
    potential_wire.png
    2.4 KB · Views: 152
Last edited:
Physics news on Phys.org
Wouldn't the left and right straight sections yield the same potential at O :wideeyed: ? (you know, symmetry and all that...)

##\ ##
 
lorenz0 said:
##(4R+x)##? How do you get that?
 
BvU said:
Wouldn't the left and right straight sections yield the same potential at O :wideeyed: ? (you know, symmetry and all that...)

##\ ##
Yes; I have edited my answer, thanks.
 
That was a mistake, which I have corrected thanks to user BvU.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top