- #1
lorenz0
- 148
- 28
- Homework Statement
- A wire of finite length has linear positive charge density ##\lambda##
What is the potential at point O?
- Relevant Equations
- ##V(r)=\frac{q}{4\pi\varepsilon_0 r}##
Considering a reference frame with ##x=0## at the leftmost point I have for the leftmost piece of wire: ##\int_{x=0}^{x=2R}\frac{\lambda dx}{4\pi\varepsilon_0 (3R-x)}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}##.
The potential at O due to the semicircular piece of wire at the center is ##\int_{\theta=0}^{\theta=\pi}\frac{\lambda Rd\theta}{4\pi\varepsilon_0 R}=\frac{\lambda}{4\varepsilon_0}##.
The potential at O due to the rightmost piece of wire is, by symmetry, the same as that due to the leftmost piece of wire ##(\int_{x=R}^{x=3R}\frac{\lambda dx}{4\pi\varepsilon_0 x}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}).##
So, the total potential at O is ##V(O)=2\frac{\lambda ln(3)}{4\pi\varepsilon_0}+\frac{\lambda}{4\varepsilon_0}=\frac{\lambda(\pi+ln(9))}{4\pi\varepsilon_0}##.
Does this make sense? Thanks
The potential at O due to the semicircular piece of wire at the center is ##\int_{\theta=0}^{\theta=\pi}\frac{\lambda Rd\theta}{4\pi\varepsilon_0 R}=\frac{\lambda}{4\varepsilon_0}##.
The potential at O due to the rightmost piece of wire is, by symmetry, the same as that due to the leftmost piece of wire ##(\int_{x=R}^{x=3R}\frac{\lambda dx}{4\pi\varepsilon_0 x}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}).##
So, the total potential at O is ##V(O)=2\frac{\lambda ln(3)}{4\pi\varepsilon_0}+\frac{\lambda}{4\varepsilon_0}=\frac{\lambda(\pi+ln(9))}{4\pi\varepsilon_0}##.
Does this make sense? Thanks
Attachments
Last edited: