- #1
steroidjunkie
- 18
- 1
Homework Statement
Powder sample of monoatomic cubic lattice crystal is analyzed using Debye-Scherrer method. Primitive vetors of direct lattice are: a1 = (a, 0, 0), a2 = (0, a, 0) i a3 = (0, 0, a). Wavelength of x-ray radiation is 1 Å.
a) Find primitive vectors of reciprocal lattice.
b) Find the first four shortest vectors of reciprocal latitce.
c) First diffraction ring is observed at an angle ##17,9^\circ## with regard to incident radiation angle. Find lattice constant a.
d) Find angles for the next three difraction rings.
Homework Equations
a) ##b_1 = \frac{2 \pi \cdot \vec{a_2} \times \vec{a_3}}{\vec{a_1} \cdot \vec{a_2} \times \vec{a_3}} = \frac{2 \pi}{a} \hat{x}##
##b_2 = \frac{2 \pi \cdot \vec{a_3} \times \vec{a_1}}{\vec{a_1} \cdot \vec{a_2} \times \vec{a_3}} = \frac{2 \pi}{a} \hat{y}##
##b_3 = \frac{2 \pi \cdot \vec{a_1} \times \vec{a_2}}{\vec{a_1} \cdot \vec{a_2} \times \vec{a_3}} = \frac{2 \pi}{a} \hat{z}##
b), c), d) ?
The Attempt at a Solution
[/B]
I have no idea how to proceed. I've found the ##\vec{k} = \frac{2 \pi}{d}## on the internet, where ##d=\lambda##, but I'm not sure if this equation can give me the shortest vector or how I'd find the other three shortest vectors.