Power in Circuit: 75W Bulb at 120V Delivers 9kW

In summary: Current does not flow through any of the wires. The charge that enters into the other items is dissipated as heat.
  • #1
latitude
56
0

Homework Statement


A lightbulb marked 75W at 120V is screwed into a scoket at one end of a long extension cord, inw hich each of the two conductors has resistance 0.8 ohms. The other end of the extension cord is plugged into a 120 V-outlet. Draw a circuit diagram and find the actual power delivered to the bulb in this circuit.


Homework Equations


IR = deltaV
P = I^2R


The Attempt at a Solution


Well, first I tried to find the current through the circuit:
I = 120 V/ R1 + R2 = 120 V/1.6 ohms = 75 A

Seemed all right,

So I found the power delivered to the bulb:
P = (75)^2(1.6) = 9000 W = 9 kW

This doesn't seem very logical to me. Haha. Perhaps I mixed up "conductor" with resistor, I'm not sure what a conductor is...? But it shouldn't make much of a difference.

I tried it with the resistors in parallel but that didnt help, of course.
 
Physics news on Phys.org
  • #2
The bulb has a different resistance, and you also need to include that in your circuit (between the two wire resistances). You can find the bulb resistance using the two formulas that you gave, using the rating values instead of the actual values that occur in the circuit. Finally, you need to find the power in the bulb resistance (in the same way that you tried, but with the correct values of current and resistance).
 
  • #3
THanks so much... I'm still not quite getting it though... could I go over it one more time?

To find the bulb's resistance, I used the power rating (75 W)

75 W = (75A)^2(R)

Where the 75A came from my previous calculation of the current through the two resistances...

So R = 0.0134 ohms

This is so small that it makes practically no difference when I add it to the equivalent resistance of the circuit...

Actual Power = (75A)^2(1.6134) = slightly >9kW
 
  • #4
K Wait, I think I got it, the flow of charge into the bulb is different...
P = VI
So I = P/V = 75/120 = 0.625 A

Then I can find the Resistance in the bulb
V = IR
R = V/I = 120/0.625 = 192 ohms

So add up the resistances of conductors and bulb
(2(0.8) + 192) = 193.6 ohms

Calculate power to bulb with resistance in bulb taken into account
P = (0.625)^2(193.6) = 75.625 W

Better. But now I have a few other questions
What are the conductors? Is that the wires? So the resistance is the resistance in the wire... if one wire is leading to the bulb and the other away from the bulb, should I only use the resistance in the wire leading TO the bulb? (Will change answer slightly)

Also, I used the 'given' power to calculate the current into the bulb at the beginning, but wouldn't the power be the power I calculated (which would have left me unable to calculate it?) Or does the energy lost in the lightbulb change it?

I hope those questions made sense. Can you tell it's my first year in an electricty course
 
  • #5
You're almost there.

The ratings are not the actual values that occur when the light bulb is on (but they should be close in a real-world application). You can use your power dissipation formula and your Ohm's Law formula to derive a formula for resistance, or you can do it in a few steps, as you did. However, you should understand that the only thing that the ratings really tell you is the resistance, nothing else (for the sake of this problem). So, Rbulb = 192 Ω, period.

Then, go back to the beginning. You have a circuit for which you know the values of the resistors and the voltage. From that, you must calculate a current. Then, I think you can take it from there.

Regarding the wires:
Through which of the following items does current flow:
- the wire "leading to the bulb"?
- the bulb itself?
- the wire "leading away from the bulb"?
If current does not flow through anyone of these items, then explain what happens to the charge that flows into the other items.
 

FAQ: Power in Circuit: 75W Bulb at 120V Delivers 9kW

What is power and how is it measured in circuits?

Power is the rate at which energy is transferred or consumed. In circuits, it is measured in watts (W) and is calculated by multiplying the voltage (V) by the current (I). This can be represented by the equation P=VI.

How can a 75W bulb produce 9kW of power?

The 75W refers to the power rating of the bulb, which is the maximum amount of power it can consume. However, when connected to a 120V circuit, the bulb will only consume 75W of power. To achieve a power output of 9kW, the circuit would need to be modified to allow for a higher voltage or current.

What is the relationship between voltage and power in a circuit?

Voltage and power have a direct relationship in a circuit. This means that as the voltage increases, the power output also increases. This can be seen in the equation P=VI, where an increase in voltage (V) results in an increase in power (P) as long as the current (I) remains constant.

Can a circuit handle the power output of a 9kW bulb?

It depends on the rating of the circuit. A circuit's rating is determined by the maximum amount of power it can handle without overheating or causing damage. If the circuit is rated for 9kW or higher, then it can handle the power output of the 9kW bulb. If not, the circuit may need to be modified or a different bulb with a lower power output should be used.

Is a 9kW bulb more efficient than a 75W bulb?

No, a 9kW bulb is not more efficient than a 75W bulb. Efficiency is a measure of how much of the input energy is converted into useful output energy. In this case, both bulbs have the same efficiency as they both consume 75W of power. The main difference is that the 9kW bulb can handle a higher power output and may be used for different purposes than the 75W bulb.

Similar threads

Back
Top