- #1
libelec
- 176
- 0
Homework Statement
Prove that [tex]\left( {\frac{{1 + \cos x + i\sin x}}{{1 + \cos x - i\sin x}}} \right)^n} = \cos nx + i\sin nx[/tex]
The Attempt at a Solution
I thought it would be a good idea calling z = 1 + cos x + i*sen x, because then 1 + cos x - i*sen x would be [tex]\bar{z}[/tex], and then I would have something of the form [tex]{\left( {\frac{z}{{\bar z}}} \right)^n} = {\left( {\frac{{{z^2}}}{{{{\left| z \right|}^2}}}} \right)^n}[/tex]. If I use the Euler form for complex numbers, being [tex]\varphi[/tex] the argument of z, then z[tex]\left| z \right|{e^{i\phi }}[/tex].
So [tex]{\left( {\frac{{{z^2}}}{{{{\left| z \right|}^2}}}} \right)^n} = {\left( {\frac{{{{(\left| z \right|{e^{i\phi }})}^2}}}{{{{\left| z \right|}^2}}}} \right)^n} = {\left( {\frac{{{{\left| z \right|}^2}{e^{i2\phi }}}}{{{{\left| z \right|}^2}}}} \right)^n} = {\left( {{e^{i2\phi }}} \right)^n} = {e^{i2n\phi }}\
[/tex]. Which would all work just fine with the proof if I could somehow prove that [tex]\varphi[/tex] = x/2.
My question is, is this OK? And if it is OK, how can I prove that [tex]\varphi[/tex] = x/2?
Thanks