- #1
pinkbabe02
- 10
- 0
differential equation help!
(1+2x-x^2)y''-6xy'-6y=0 find power series solution of the equation near x0=1
(a)show the recurrence relation for an,
(b)derive a formula for an in terms of a0 and a1, and
(c)show the solution in the form y=a0y1(x)+a1y2(x)
I`ll attach the word file I typed it up in if that is easier to read...
(1+2x-x^2 ) y^''-6xy^'-6y=0, x_0=1
Let…
y=∑_(n=0)^∞▒〖a_n x^n 〗
y^'=∑_(n=1)^∞▒〖〖na〗_n x^(n-1) 〗
y^''=∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗
(1+2x-x^2 ) ∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗-6x∑_(n=1)^∞▒〖〖na〗_n x^(n-1) 〗-6∑_(n=0)^∞▒〖a_n x^n 〗=0
∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗+∑_(n=2)^∞▒〖2n(n-1) a_n x^(n-1)-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗-∑_(n=1)^∞▒〖〖6na〗_n x^n 〗-∑_(n=0)^∞▒〖〖6a〗_n x^n 〗=0
∑_(n=0)^∞▒〖(n+2)(n+1)a_(n+2) x^n 〗+∑_(n=1)^∞▒〖2(n+1)(n) a_(n+1) x^n-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗-∑_(n=1)^∞▒〖〖6na〗_n x^n 〗-∑_(n=0)^∞▒〖〖6a〗_n x^n 〗=0
∑_(n=0)^∞▒〖[(n+2)(n+1) a_(n+2)-〖6a〗_n ] x^n 〗+∑_(n=1)^∞▒〖[2(n+1)(n) a_(n+1)-〖6na〗_n ] x^n-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗=0
I can turn the second term into n=0 since when n=0, the value equals 0 anyhow…the same goes for the third term (when n=0, 1 the value is 0), so we have…
∑_(n=0)^∞▒[(n+2)(n+1) a_(n+2)-〖6a〗_n ┤ +2(n+1)(n) a_(n+1)-〖6na〗_n-n(n-1)a_n 〖]x〗^n=0
∑_(n=0)^∞▒〖[(n+2)(n+1) a_(n+2)+(2n(n+1)) a_(n+1)+(-6-6n-n(n-1))a_n ] x^n=0〗
This is where I am stuck. I don’t know how to find the recurrence relation since I have a_n,a_(n+1),and a_(n+2). If someone could give me a hint that would be extremely helpful.
[STRIKE][STRIKE][/STRIKE][/STRIKE]
Homework Statement
(1+2x-x^2)y''-6xy'-6y=0 find power series solution of the equation near x0=1
(a)show the recurrence relation for an,
(b)derive a formula for an in terms of a0 and a1, and
(c)show the solution in the form y=a0y1(x)+a1y2(x)
Homework Equations
The Attempt at a Solution
I`ll attach the word file I typed it up in if that is easier to read...
(1+2x-x^2 ) y^''-6xy^'-6y=0, x_0=1
Let…
y=∑_(n=0)^∞▒〖a_n x^n 〗
y^'=∑_(n=1)^∞▒〖〖na〗_n x^(n-1) 〗
y^''=∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗
(1+2x-x^2 ) ∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗-6x∑_(n=1)^∞▒〖〖na〗_n x^(n-1) 〗-6∑_(n=0)^∞▒〖a_n x^n 〗=0
∑_(n=2)^∞▒〖n(n-1)a_n x^(n-2) 〗+∑_(n=2)^∞▒〖2n(n-1) a_n x^(n-1)-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗-∑_(n=1)^∞▒〖〖6na〗_n x^n 〗-∑_(n=0)^∞▒〖〖6a〗_n x^n 〗=0
∑_(n=0)^∞▒〖(n+2)(n+1)a_(n+2) x^n 〗+∑_(n=1)^∞▒〖2(n+1)(n) a_(n+1) x^n-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗-∑_(n=1)^∞▒〖〖6na〗_n x^n 〗-∑_(n=0)^∞▒〖〖6a〗_n x^n 〗=0
∑_(n=0)^∞▒〖[(n+2)(n+1) a_(n+2)-〖6a〗_n ] x^n 〗+∑_(n=1)^∞▒〖[2(n+1)(n) a_(n+1)-〖6na〗_n ] x^n-∑_(n=2)^∞▒〖n(n-1)a_n x^n 〗〗=0
I can turn the second term into n=0 since when n=0, the value equals 0 anyhow…the same goes for the third term (when n=0, 1 the value is 0), so we have…
∑_(n=0)^∞▒[(n+2)(n+1) a_(n+2)-〖6a〗_n ┤ +2(n+1)(n) a_(n+1)-〖6na〗_n-n(n-1)a_n 〖]x〗^n=0
∑_(n=0)^∞▒〖[(n+2)(n+1) a_(n+2)+(2n(n+1)) a_(n+1)+(-6-6n-n(n-1))a_n ] x^n=0〗
This is where I am stuck. I don’t know how to find the recurrence relation since I have a_n,a_(n+1),and a_(n+2). If someone could give me a hint that would be extremely helpful.
[STRIKE][STRIKE][/STRIKE][/STRIKE]