- #1
Ted123
- 446
- 0
Homework Statement
Find 2 independent solutions which are power series in x of [tex]y'' + xy =0[/tex] and find the radius of convergence of each solution.
The Attempt at a Solution
[tex]\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x\sum_{n=0}^{\infty}a_n x^n = 0[/tex]
[tex]\sum_{n=-1}^{\infty} (n+3)(n+2) a_{n+3} x^{n+1} + \sum_{n=0}^{\infty} a_n x^{n+1} = 0[/tex]
[tex]2a_2 + \sum_{n=0}^{\infty} [(n+3)(n+2) a_{n+3} + a_n ]x^{n+1} = 0[/tex]
[tex]\implies a_2 = 0[/tex]
[tex]a_{n+3} = -\frac{a_n}{(n+3)(n+2)}[/tex] for [tex]n=0,1,2,...[/tex]
Is this right so far?
Then how to solve for [tex]a_n[/tex] to find 2 power series solutions...?
Last edited: