- #1
Risborg
- 4
- 0
Homework Statement
Let ##\sum^{\infty}_{n=0} a_n(z-a)^n## be a real or complex power series and set ##\alpha =
\limsup\limits_{n\rightarrow\infty} |a_n|^{\frac{1}{n}}##. If ##\alpha = \infty## then the convergence radius ##R=0##, else ##R## is given by ##R = \frac{1}{\alpha}##, where ##0<R\leq\infty##.
A lower bound for the convergence radius can by found by using ##\beta = \limsup\limits_{n\rightarrow\infty} \frac{|a_{n+1}|}{|a_n|} ##, such that ##\frac{1}{\beta} = \tilde{R}##, so ##\tilde{R} \leq R##
Construct an example of a power series where ##\tilde{R} \neq R##
The Attempt at a Solution
I have tried some different kinds of values for ##a_n##, but I always end up with same answer for ##R## and ##\tilde{R}##.
I think i need to define ##a_n## recursively, but I don't know how to prove it, below I've written the relation between ##a_n## and ##a_{n+1}##.
##\beta^{-1} = \limsup\limits_{n\rightarrow\infty}\frac{|a_{n}|}{|a_{n+1}|} < \alpha^{-1} = \limsup\limits_{n\rightarrow\infty} |a_n|^{-\frac{1}{n}}##
which implies that
##\limsup\limits_{n\rightarrow0\infty} |a_{n+1}| > \limsup\limits_{n\rightarrow\infty} |a_{n}||a_n|^{\frac{1}{n}}##
I tried a few recursively defined ##a_n## but then I ended up with complicated expressions that I could find the limit of.
Can you think of a clever way to define ##a_n##, or do you have some suggestions for what I could do next?
Last edited: