- #1
Lambda96
- 203
- 71
- Homework Statement
- Check the relation of the energy balance ##\partial_t \omega + \nabla \cdot \vec S=- \vec j \cdot \vec E##
- Relevant Equations
- none
Hi
I have a problem with task c)
For the Poynting vector ##\vec S## and the energy density ##\omega## I got the following:
$$\vec S= \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \vec{e}_\varrho$$
$$\omega= \frac{1}{2} \epsilon_0 \frac{4 I_0^2 \Theta(ct- \varrho)(\varrho^2+c^4t^2)}{c^4\varrho^2t^2-\varrho^4 c^2}$$
Then I calculated the following
$$\partial_t \omega=\frac{4 I_0^2 \epsilon_0(c^4t^2+\varrho^2)\delta(ct-\varrho)\Theta(ct-\varrho)}{c^3\varrho^2t^2-c\varrho^4}-\frac{4 I_0^2 (c^2+1)t \epsilon_0 \Theta(ct-\varrho)^2}{(c^2t^2-\varrho^2)^2}$$
and the i used the hint ##\nabla (f \vec v)=(\nabla f) \cdot \vec v + f \nabla \cdot \vec v##
$$(\nabla f) \cdot \vec v + f \nabla \cdot \vec v=\Biggl( - \frac{8 I_0 t \delta(ct-\varrho) \Theta(ct-\varrho)}{c^3 \mu t^2 \varrho-c \mu \varrho^3}-\frac{4 I_0 t (c^2t^2-3 \varrho^2)\Theta(ct-\varrho)^2}{c \mu (\varrho^3-c^2 t^2 \varrho)^2} \Biggr) \cdot \vec e_\varrho + \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \cdot \vec e_\varphi$$
Unfortunately I don't know what I can do with it, the results are quite a mess or have I miscalculated and also in the task part b) ?
I have a problem with task c)
For the Poynting vector ##\vec S## and the energy density ##\omega## I got the following:
$$\vec S= \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \vec{e}_\varrho$$
$$\omega= \frac{1}{2} \epsilon_0 \frac{4 I_0^2 \Theta(ct- \varrho)(\varrho^2+c^4t^2)}{c^4\varrho^2t^2-\varrho^4 c^2}$$
Then I calculated the following
$$\partial_t \omega=\frac{4 I_0^2 \epsilon_0(c^4t^2+\varrho^2)\delta(ct-\varrho)\Theta(ct-\varrho)}{c^3\varrho^2t^2-c\varrho^4}-\frac{4 I_0^2 (c^2+1)t \epsilon_0 \Theta(ct-\varrho)^2}{(c^2t^2-\varrho^2)^2}$$
and the i used the hint ##\nabla (f \vec v)=(\nabla f) \cdot \vec v + f \nabla \cdot \vec v##
$$(\nabla f) \cdot \vec v + f \nabla \cdot \vec v=\Biggl( - \frac{8 I_0 t \delta(ct-\varrho) \Theta(ct-\varrho)}{c^3 \mu t^2 \varrho-c \mu \varrho^3}-\frac{4 I_0 t (c^2t^2-3 \varrho^2)\Theta(ct-\varrho)^2}{c \mu (\varrho^3-c^2 t^2 \varrho)^2} \Biggr) \cdot \vec e_\varrho + \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \cdot \vec e_\varphi$$
Unfortunately I don't know what I can do with it, the results are quite a mess or have I miscalculated and also in the task part b) ?