MHB Pre-calculus Grade 11 IB (higher level)

AI Thread Summary
To solve for a and b in the function transformation problem, the original function f(x) = ax + b undergoes a series of transformations resulting in g(x) = 4 - 15x. The transformations include a translation, reflection through the x-axis, and a horizontal stretch. By applying the transformation rules, the equations -3a = -15 and -a + b + 2 = 4 are derived, leading to the solutions a = 5 and b = 7. The discussion emphasizes understanding how each transformation affects the function's graph to arrive at the correct values of a and b.
TeddyJohnson
Messages
1
Reaction score
0
Can anyone explain how to solve this question, please? The answer is a=5 & b=7, but I don't understand how to solve it.

The graph of function f(x) = ax + b is transformed by the following sequence:

translation by (1) (meaning 1 horizontal, 2 vertical)
(2)

reflection through y=0

horizontal stretch, scale factor 1/3, relative to x=0

The resulting function is g(x)=4-15x
Find a & b

Thanks for your help.
 
Mathematics news on Phys.org
Hi, and welcome to the forum!

To solve this problem you need to know how change of function $f$ affects the graph of $f$. Here are a few rules.
  1. $f(x)\mapsto f(x-a)$: horizontal shift by $a$ to the right.
  2. $f(x)\mapsto f(x)+b$: vertical shift by $b$ up.
  3. $f(x)\mapsto f(-x)$: reflection through $y=0$.
  4. $f(x)\mapsto f(x/k)$: horizontal stretch with scale factor $k$ relative to $x=0$.
Suppose the original function is $f(x)=ax+b$. Using these rules, the formula changes as follows.
  1. Translation by (1, 2): $a(x-1)+b+2$.
  2. Reflection through $y=0$: $a(-x-1)+b+2$.
  3. Horizontal stretch with scale factor $1/3$ relative to $x=0$: $a(-3x-1)+b+2$.
The problem statement says that $a(-3x-1)+b+2=4-15x$. Equating the numbers multiplied by $x$ and the free coefficient we get two equations: $-3a=-15$ and $-a+b+2=4$, from where $a=5$ and $b=7$.

It is important to remember that when viewing a formula like $a(-x-1)+b+2$ as a function of $x$, only $x$ changes when we go, say, from $f(x)$ to $f(3x)$. The result is $a(-(3x)-1)+b+2$ and not $3(a(-x-1)+b+2)$.

Here is another way. The points in the original graph have coordinates $(x, ax+b)$. The geometric transformation change the coordinates as follows.
  1. Translation by (1, 2): $(x+1,ax+b+2)$.
  2. Reflection through $y=0$: $(-(x+1),ax+b+2)$.
  3. Horizontal stretch with scale factor $1/3$ relative to $x=0$: $(-(x+1)/3,ax+b+2)$.
The resulting point is $(x', 4-15x')$ for some $x'$. Therefore $x'=-(x+1)/3$ and $4-15x'=4+5(x+1)=5x+9$. Equating this with $ax+b+2$ (separately coefficients at $x$ and the free one) we get $a=5$ and $b+2=9$, i.e., $b=7$.

If you need more explanation, feel free to ask.
 
I think there’s a typo: the reflection should be through $\color{red}x\color{black}=0$, not $y=0$.

Here’s yet another way: work backwards.

Start with $g(x)=4-15x$.

Do the reverse of horizontal stretching by $\frac13$, namely horizontal stretching by $3$. Under this mapping, $(x',y')=(3x,y)$ $\implies$ $(x,y)=\left(\frac13x',y'\right)$ $\implies$ $g(x)=4-15x\mapsto h_1(x)=4-15\left(\frac13x\right)=4-5x$.

Next, the reverse of reflection in $x=0$, which is the same transformation: $(x',y')=(-x,y)$ $\implies$ $(x,y)=\left(-x',y'\right)$ $\implies$ $h_1(x)=4-5x\mapsto h_2(x)=4-5(-x)=4+5x$.

Finally, the reverse of the translation $\begin{pmatrix}1 \\ 2\end{pmatrix}$, which is $\begin{pmatrix}-1 \\ -2\end{pmatrix}$: $(x',y')=(x-1,y-2)$ $\implies$ $(x,y)=\left(x'+1,y'+2'\right)$ $\implies$ $h_2(x)=4+5x\mapsto f(x)+2=4+5(x+1)=9+5x$, i.e. $f(x)=5x+7$.

Hence $a=5,b=7$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top