- #1
thatboi
- 133
- 18
Hey all,
I am encountering an issue reconciling the choice of prefactors in the canonical quantization of the scalar field between Srednicki and Peskin's books. In Peskin's book (see equation (2.47)), there is a prefactor of ##\frac{1}{\sqrt{2E_{p}}}## whereas in Srednicki's book (see equation (3.18) and (3.19)), there is a prefactor of ##\frac{1}{2\omega}##. What concerns me is that if we take the derivative with respect to time of the field, then in Peskin's case, we are left with a ##\sqrt{E_{p}}## factor whereas in Srednicki's book, the ##\frac{1}{\omega}## prefactor completely disappears, so I fail to see how these 2 definitions can be equivalent.
Thanks.
I am encountering an issue reconciling the choice of prefactors in the canonical quantization of the scalar field between Srednicki and Peskin's books. In Peskin's book (see equation (2.47)), there is a prefactor of ##\frac{1}{\sqrt{2E_{p}}}## whereas in Srednicki's book (see equation (3.18) and (3.19)), there is a prefactor of ##\frac{1}{2\omega}##. What concerns me is that if we take the derivative with respect to time of the field, then in Peskin's case, we are left with a ##\sqrt{E_{p}}## factor whereas in Srednicki's book, the ##\frac{1}{\omega}## prefactor completely disappears, so I fail to see how these 2 definitions can be equivalent.
Thanks.