- #1
sarriiss
- 2
- 1
Having two null vectors with $$n^{a} l_{a}=-1, \\ g_{ab}=-(l_{a}n_{b}+n_{a}l_{b}),\\ n^{a}\nabla_{a}n^{b}=0$$ gives $$\nabla_{a}n_{b}=\kappa n_{a}n_{b},\\ \nabla_{a}n^{a}=0,\\ \nabla_{a}l_{b}=-\kappa n_{a}l_{b},\\ \nabla_{a}l^{a}=\kappa$$.
How to show that under the variation of the null vectors, above covariant derivatives are preserved? In other words how to get the conditions on variation of null vectors which preserve the above covariant derivatives. To be specific, I need some hints to get equation (2.5) in Carlip's paper https://arxiv.org/abs/1702.04439. I started with $$l^{a}\rightarrow l^{a}+\delta l^{a},\\ n^{a}\rightarrow n^{a}+\delta n^{a}$$ but couldn't get equation (2.5) in Carlip's paper.
How to show that under the variation of the null vectors, above covariant derivatives are preserved? In other words how to get the conditions on variation of null vectors which preserve the above covariant derivatives. To be specific, I need some hints to get equation (2.5) in Carlip's paper https://arxiv.org/abs/1702.04439. I started with $$l^{a}\rightarrow l^{a}+\delta l^{a},\\ n^{a}\rightarrow n^{a}+\delta n^{a}$$ but couldn't get equation (2.5) in Carlip's paper.