- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am studying Dummit and Foote Section 15.2. I am trying to understand the proof of Proposition 19 Part (5) on page 682 (see attachment)
Proposition 19 Part (5) reads as follows:
----------------------------------------------------------------------------------------------------------------------------
Proposition 19.
... ...
(5) Suppose M is a maximal ideal and Q is an ideal with [TEX] M^n \subseteq Q \subseteq M [/TEX] for some [TEX] n \ge 1 [/TEX].
Then Q is a primary idea, with rad Q = M
------------------------------------------------------------------------------------------------------------------------------The proof of (5) above reads as follows:-------------------------------------------------------------------------------------------------------------------------------
Proof.
Suppose [TEX] M^n \subseteq Q \subseteq M [/TEX] for some [TEX] n \ge 1 [/TEX] where M is a maximal idea.
Then [TEX] Q \subseteq M [/TEX] so [TEX] rad \ Q \subseteq rad \ M = M [/TEX].
... ... etc
--------------------------------------------------------------------------------------------------------------------------------
My problem is as follows:
Why can we be sure that rad M = M?
I know that M is maximal and so no ideal in R can contain M. We also know that [TEX] M \subseteq rad \ M [/TEX]
Thus either rad M = M (the conclusion D&F use) or rad M = R?
How do we know that [TEX] rad \ M \ne R [/TEX]?
Would appreciate some help.
Peter
Proposition 19 Part (5) reads as follows:
----------------------------------------------------------------------------------------------------------------------------
Proposition 19.
... ...
(5) Suppose M is a maximal ideal and Q is an ideal with [TEX] M^n \subseteq Q \subseteq M [/TEX] for some [TEX] n \ge 1 [/TEX].
Then Q is a primary idea, with rad Q = M
------------------------------------------------------------------------------------------------------------------------------The proof of (5) above reads as follows:-------------------------------------------------------------------------------------------------------------------------------
Proof.
Suppose [TEX] M^n \subseteq Q \subseteq M [/TEX] for some [TEX] n \ge 1 [/TEX] where M is a maximal idea.
Then [TEX] Q \subseteq M [/TEX] so [TEX] rad \ Q \subseteq rad \ M = M [/TEX].
... ... etc
--------------------------------------------------------------------------------------------------------------------------------
My problem is as follows:
Why can we be sure that rad M = M?
I know that M is maximal and so no ideal in R can contain M. We also know that [TEX] M \subseteq rad \ M [/TEX]
Thus either rad M = M (the conclusion D&F use) or rad M = R?
How do we know that [TEX] rad \ M \ne R [/TEX]?
Would appreciate some help.
Peter
Last edited: