MHB Prime elements in integral domains

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote, Section 8.3 on Unique Factorization Domains, Proposition 10 reads as follows:

Proposition 10: In an integral domain a prime element is always irreducible.

The proof reads as follows:

===========================================================

Suppose (p) is a non-zero prime ideal and p = ab.

Then ab = p \in (p), so by definition of prime ideal, one of a or b, say a, is in (p).

Thus a = pr for some r.

This implies p = ab = prb and so rb = 1 and b is a unit.

This shows that p is irreducible.

==============================================================

My question is as follows: Where in this proof do D&F use the fact that p is in an integral domain? (It almost reads as if this applies for any ring)

Peter
 
Physics news on Phys.org
In this step:
Peter said:
This implies p = ab = prb and so rb = 1 and b is a unit.

Since an integral domain has no zero divisors by definition there's a cancelation law which says:
Let R be an integral domain and a,b,c \in R. If a \neq 0 and ab=ac then b=c.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top