- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking the follwong exercise:
Using the method of Quine-McCluskey, determine the prime implicants for the following switching function and find a disjunctive minimal form. If available, also specify all other disjoint minimal forms.
The switching function is:
\begin{align*}f(x_1, x_2, x_3, x_4, x_5)&=\bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4\bar{x}_5\lor \bar{x}_1x_2\bar{x}_3\bar{x}_4\bar{x}_5\lor \bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4x_5\lor \bar{x}_1x_2\bar{x}_3x_4\bar{x}_5 \\ & \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4x_5 \lor x_1x_2\bar{x}_3x_4\bar{x}_5\lor \bar{x}_1x_2x_3x_4\bar{x}_5 \lor \bar{x}_1x_2x_3x_4x_5 \\ & \lor x_1x_2\bar{x}_3x_4x_5\end{align*} I have done the following:
It holds that $\bar{x}=x^0$ and $x=x_1$. So we get the following:
\begin{align*}f(x_1, x_2, x_3, x_4, x_5)&=x_1^0x_2^0x_3^0x_4^0x_5^0\lor x_1^0x_2^1x_3^0x_4^0x_5^0\lor x_1^0x_2^0x_3^0x_4^0x_5^1\lor x_1^0x_2^1x_3^0x_4^1x_5^0 \\ & \lor x_1^0x_2^1x_3^0x_4^0x_5^1 \lor x_1^1x_2^1x_3^0x_4^1x_5^0\lor x_1^0x_2^1x_3^1x_4^1x_5^0\lor x_1^0x_2^1x_3^1x_4^1x_5^1 \\ & \lor x_1^1x_2^1x_3^0x_4^1x_5^1\end{align*}
We create the following table using the weights and we try to merge the midterms.
View attachment 9290
Therefore we get six primterms:
\begin{align*}&p_1=m_2+m_4=x_1^0x_2^1x_3^0x_5^0=\bar{x}_1x_2\bar{x}_3\bar{x}_5 \\ &p_2=m_4+m_6=x_2\bar{x}_3x_4\bar{x}_5 \\ &p_3=m_4+m_7=\bar{x}_1x_2x_4\bar{x}_5 \\ &p_4=m_6+m_9=x_1x_2\bar{x}_3x_4 \\ &p_5=m_7+m_8=\bar{x}_1x_2x_3x_4 \\ &p_6=m_1+m_2+m_3+m_5=\bar{x}_1\bar{x}_3\bar{x}_4\end{align*} The primterm table is then the following:
View attachment 9291
We can delete the columns $m_2, m_3, m_5$ because of $m_1$. We can delete also the columns $m_4,m_9$ because of $m_6$. We can delete also the columns $m_7$ because of $m_8$.
Then the table looks as follows:
View attachment 9292
We can delete the rows $p_1$ and $p_3$ since these are empty. We can delete also the row $p_2$ because of $p_4$ and so we get:
View attachment 9293
Do we get from that that the primterms are $p_4, p_5, p_6$? Are these the essential prime implicants?
How do we get the disjunctive minimal form from that? Do the selected primary terms simply have to be linked by disjunction? (Wondering)
I am looking the follwong exercise:
Using the method of Quine-McCluskey, determine the prime implicants for the following switching function and find a disjunctive minimal form. If available, also specify all other disjoint minimal forms.
The switching function is:
\begin{align*}f(x_1, x_2, x_3, x_4, x_5)&=\bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4\bar{x}_5\lor \bar{x}_1x_2\bar{x}_3\bar{x}_4\bar{x}_5\lor \bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4x_5\lor \bar{x}_1x_2\bar{x}_3x_4\bar{x}_5 \\ & \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4x_5 \lor x_1x_2\bar{x}_3x_4\bar{x}_5\lor \bar{x}_1x_2x_3x_4\bar{x}_5 \lor \bar{x}_1x_2x_3x_4x_5 \\ & \lor x_1x_2\bar{x}_3x_4x_5\end{align*} I have done the following:
It holds that $\bar{x}=x^0$ and $x=x_1$. So we get the following:
\begin{align*}f(x_1, x_2, x_3, x_4, x_5)&=x_1^0x_2^0x_3^0x_4^0x_5^0\lor x_1^0x_2^1x_3^0x_4^0x_5^0\lor x_1^0x_2^0x_3^0x_4^0x_5^1\lor x_1^0x_2^1x_3^0x_4^1x_5^0 \\ & \lor x_1^0x_2^1x_3^0x_4^0x_5^1 \lor x_1^1x_2^1x_3^0x_4^1x_5^0\lor x_1^0x_2^1x_3^1x_4^1x_5^0\lor x_1^0x_2^1x_3^1x_4^1x_5^1 \\ & \lor x_1^1x_2^1x_3^0x_4^1x_5^1\end{align*}
We create the following table using the weights and we try to merge the midterms.
View attachment 9290
Therefore we get six primterms:
\begin{align*}&p_1=m_2+m_4=x_1^0x_2^1x_3^0x_5^0=\bar{x}_1x_2\bar{x}_3\bar{x}_5 \\ &p_2=m_4+m_6=x_2\bar{x}_3x_4\bar{x}_5 \\ &p_3=m_4+m_7=\bar{x}_1x_2x_4\bar{x}_5 \\ &p_4=m_6+m_9=x_1x_2\bar{x}_3x_4 \\ &p_5=m_7+m_8=\bar{x}_1x_2x_3x_4 \\ &p_6=m_1+m_2+m_3+m_5=\bar{x}_1\bar{x}_3\bar{x}_4\end{align*} The primterm table is then the following:
View attachment 9291
We can delete the columns $m_2, m_3, m_5$ because of $m_1$. We can delete also the columns $m_4,m_9$ because of $m_6$. We can delete also the columns $m_7$ because of $m_8$.
Then the table looks as follows:
View attachment 9292
We can delete the rows $p_1$ and $p_3$ since these are empty. We can delete also the row $p_2$ because of $p_4$ and so we get:
View attachment 9293
Do we get from that that the primterms are $p_4, p_5, p_6$? Are these the essential prime implicants?
How do we get the disjunctive minimal form from that? Do the selected primary terms simply have to be linked by disjunction? (Wondering)
Attachments
Last edited by a moderator: