- #1
tmt1
- 234
- 0
For prime numbers, $a$, $b$, $c$, $a^2 + b^2 \ne c^2$. Prove this by contradiction.
So, I get that $a^2 = c^2 - b^2 = (c - b)(c +b)$
And I get that prime numbers are the product of 2 numbers that are either greater than one, or less than the prime numbers.
But I'm unsure how to go from here.
So, I get that $a^2 = c^2 - b^2 = (c - b)(c +b)$
And I get that prime numbers are the product of 2 numbers that are either greater than one, or less than the prime numbers.
But I'm unsure how to go from here.