MHB Prime Versus Irreducible Numbers

  • Thread starter Thread starter Panda1
  • Start date Start date
  • Tags Tags
    Numbers Prime
AI Thread Summary
A natural number p greater than 1 is defined as irreducible if for any natural numbers a and b, p dividing the product ab implies that p divides either a or b. The discussion centers on proving that if p is irreducible, then the equation p = ab leads to either p = a or p = b. The proof involves demonstrating that if p divides a or b, it must equal one of them due to their positive nature. This establishes that irreducible numbers greater than 1 are indeed prime. The conversation highlights the connection between irreducibility and primality in natural numbers.
Panda1
Messages
1
Reaction score
0
I don't quite know where to start with this one:

"A natural number p>1 is called irreducible if it has the property that, for any natural numbers a and b, p|ab always implies that either p|a or p|b (or both).

Prove that if a natural number p>1 is irreducible, then it also has the property that p=ab always implies that either p=a or p=b."

I figured that I essentially need to prove that irreducible natural numbers greater than 1 are prime.

Any help with this would greatly appreciated especially since I'm rather new to this site.
 
Mathematics news on Phys.org
Hi Panda,

Let $p$ be irreducible; let $a, b$ be natural numbers such that $p = ab$. Then $p | ab$, which implies $p | a$ or $p | b$ by irreducibility of $p$. If $p | a$, then since $a | ab = p$ we have $p = \pm a$. Since $p$ and $a$ are positive, $p = a$. Similarly if $p | b$, then since $b | p$ we deduce $p = b$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top