MHB Prime X 's question at Yahoo Answers (Eigenvalues of AB and BA)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Prime
AI Thread Summary
For n-square matrices A and B, it is proven that the matrices AB and BA share the same eigenvalues. This is demonstrated using block matrices C and D, leading to the conclusion that the determinants of the characteristic polynomials of AB and BA are equal. The proof relies on the property that the determinant of the product of matrices is invariant under the order of multiplication. Consequently, both matrices have the same characteristic polynomial, which implies they possess identical eigenvalues. Additionally, the proof indicates that any common eigenvalue retains the same multiplicity for both matrices.
Mathematics news on Phys.org
Hello Prime X,

Suppose $A,B \in\mathbb{F}^{n\times n}$ ($\mathbb{F}$ field) and consider the block matrices $$C=\begin{bmatrix}{\lambda I}&{A}\\{B}&{I}\end{bmatrix}\;,\quad D=\begin{bmatrix}{-I}&{0}\\{B}&{-\lambda I}\end{bmatrix}\quad (I\in\mathbb{F}^{n\times n})$$ Then, $$CD=\begin{bmatrix}{\lambda I}&{A}\\{B}&{I}\end{bmatrix}\begin{bmatrix}{-I}&{0}\\{B}&{-\lambda I}\end{bmatrix}=\begin{bmatrix}{-\lambda I+AB}&{-\lambda A}\\{0}&{-\lambda I}\end{bmatrix}\\DC=\begin{bmatrix}{-I}&{0}\\{B}&{-\lambda I}\end{bmatrix}\begin{bmatrix}{\lambda I}&{A}\\{B}&{I}\end{bmatrix}=\begin{bmatrix}{-\lambda I}&{- A}\\{0}&{BA-\lambda I}\end{bmatrix}$$ According to a well-known property $\det(CD)=\det(DC)$ so, $$\det (AB-\lambda I)(-\lambda)^n=(-\lambda)^n\det(BA-\lambda I)$$ Equivalently $$(-\lambda)^n[\det (AB-\lambda I)-\det (BA-\lambda I)]=0$$ But $\mathbb{K}[\lambda]$ is an integral domain so, $$\det (AB-\lambda I)=\det (BA-\lambda I)$$ That is, $AB$ and $BA$ have the same characteristic polynomial (as a consequence the same eigenvalues)

Remark: The above proof also shows that every common eigenvalue has the same multiplicity (with respect to $AB$ and $BA$).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top