- #1
Kalinka35
- 50
- 0
Homework Statement
Cards from a standard deck of 52 playing cards are laid face up one at a time. If the first card is an ace, the second card is an 2, the third card is a three, ..., the 13th card is a king, the 14th is an ace, etc. we call it a "match." The 13n+1th card does not need to be any particular ace, it just needs to be an ace. Find the expected number of matches that occur.
Homework Equations
The Attempt at a Solution
I let the random variable X represent the total number of matches.
So Xi=1 if the ith card is a match, and 0 if it is not a match.
Then I summed over the all the cards from 1 to 52.
The thing that I was having trouble calculating was P(Xi=1). It seems like on any given trial there is a 4/52 chance of getting a match, but this seems oversimplified.