- #1
Tac-Tics
- 816
- 7
Is there a "standard" probability measure one would use for the set of smooth real-valued functions on [a, b]?
My intuition is picturing a setup where you cut out shapes in the x-y plane, and then the set of functions whose graphs are contained in that shape have a measure proportional to the Euclidean area of the shape. But I can't quite make that intuition exact.
My intuition is picturing a setup where you cut out shapes in the x-y plane, and then the set of functions whose graphs are contained in that shape have a measure proportional to the Euclidean area of the shape. But I can't quite make that intuition exact.