- #1
mahler1
- 222
- 0
Homework Statement
Let ##X## be a discrete random variable, we say that ##x_0 \in R_X## is a most probable value for ##X## if
##p_X(x_0)=sup_{x \in R_X} p_X(x)##.
1)Show that every discrete random variable admits at least one most probable value.
2) Check that ##[(n+1)p]## is a most probable value for ##X \sim Bi(n,p)##, and that ##[\lambda]## is a most probable value for the Poisson distribution of parameter ##\lambda##
The Attempt at a Solution
I am pretty lost in both parts of the problem. As for 2), I know that if ##X## has a binomial distribution ##B(n,p)##, then the mass function
##p_X(x)=\binom{n}{x}(1-p)^{n-x}p^x##,
and that if ##X## has a poisson distribution, then the mass function is
##p_X(x)=\dfrac{\lambda^x}{x!}e^{-\lambda}##.
How can I find the supreme of both functions? Any help would be appreciated.