MHB Probability of White Ball Drawn Twice From Urn I & II

  • Thread starter Thread starter Jameson
  • Start date Start date
  • Tags Tags
    Balls
AI Thread Summary
The discussion revolves around calculating probabilities related to drawing balls from two urns, using Bayes' Theorem. For part (a), the probability that the first ball drawn is from urn I, given that it is white, is calculated to be 2/3. In part (b), the probability that the second ball is also white, given the first was white, is determined to be 5/12. The calculations involve breaking down the probabilities based on the outcomes of a coin flip and the composition of the urns. The participants confirm the correctness of the methods used and express confidence in their understanding of the problem.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Basic problem:
Urn I has 4 white and 4 black balls. Urn II has 2 white and 6 black balls. Flip a fair coin. If the outcome is heads, then a ball from urn I is selected, whereas if the outcome is tails, then a ball from urn II is selected. Suppose a white ball is selected and the replaced. Denote this event by $W_1$. Now another ball is withdrawn at random from the same urn.

(a) What is the probability that the first ball is from urn I (given that it is white)?

My solution to part (a):
This can be solved by Bayes' Theorem in a pretty straightforward way. Let the notation $W_1$ mean that the first ball is white and let $U_1$ mean that it was chosen from urn I.

$$P \left( U_1|W_1 \right) = \frac{ P \left( W_1 \cap U_1 \right)}{P \left(W_1 \right)} = \frac{P \left( W_1|U_1 \right)P(U_1)}{P \left( W_1|U_1 \right)P(U_1)+P \left( W_1|U_2 \right)P(U_2)}$$.

Now plugging in the information I have into the last expression I get:

$$P \left( U_1|W_1 \right)=\frac{\frac{1}{2}\frac{1}{2}}{\frac{1}{2} \frac{1}{2}+\frac{1}{4}\frac{1}{2}}=\frac{2}{3}$$

So my question is how does that look?

(b) What is the probability that the second ball is also white?

My solution to part (b):
This one I'm not 100% sure on. I think it should be similar to part (a) except the values of $$P(U_1)$$ and $$P(U_2)$$ will be different. Instead of $\frac{1}{2}$ and $\frac{1}{2}$ they will be $\frac{2}{3}$ and $\frac{1}{3}$ respectively. So the solution should be found using the same method just replacing those values, correct?
 
Mathematics news on Phys.org
I think I solved it now. My above idea was wrong.

What I need to find is $$P(W_2|W_1)=\frac{P(W_2 \cap W_1)}{P(W_1)}$$. Both the numerator and denominator should be broken up into two cases. Once I do that I get the following:

$$P(W_2|W_1)=\frac{\frac{1}{2}\frac{1}{2}\frac{1}{2}+\frac{1}{4} \frac{1}{4}\frac{1}{2}}{\frac{1}{2}\frac{1}{2}+ \frac{1}{4}\frac{1}{2}}=\frac{5}{12}$$
 
Last edited:
Jameson said:
Basic problem:
Urn I has 4 white and 4 black balls. Urn II has 2 white and 6 black balls. Flip a fair coin. If the outcome is heads, then a ball from urn I is selected, whereas if the outcome is tails, then a ball from urn II is selected. Suppose a white ball is selected and the replaced. Denote this event by $W_1$. Now another ball is withdrawn at random from the same urn.
My solution to part (a):
This can be solved by Bayes' Theorem in a pretty straightforward way. Let the notation $W_1$ mean that the first ball is white and let $U_1$ mean that it was chosen from urn I.

$$P \left( U_1|W_1 \right) = \frac{ P \left( W_1 \cap U_1 \right)}{P \left(W_1 \right)} = \frac{P \left( W_1|U_1 \right)P(U_1)}{P \left( W_1|U_1 \right)P(U_1)+P \left( W_1|U_2 \right)P(U_2)}$$.

Now plugging in the information I have into the last expression I get:

$$P \left( U_1|W_1 \right)=\frac{\frac{1}{2}\frac{1}{2}}{\frac{1}{2} \frac{1}{2}+\frac{1}{4}\frac{1}{2}}=\frac{2}{3}$$

So my question is how does that look?

Looks fine!

Since the probability on urn I and urn II is equally likely, so any ball is equally likely, you can shorten it to:
$$P(U_1|W_1) = \frac{P(U_1 \wedge W_1)}{P(W_1)} = \frac{\frac 4 {16}}{\frac 6 {16}} = \frac 2 3$$
My solution to part (b):
This one I'm not 100% sure on. I think it should be similar to part (a) except the values of $$P(U_1)$$ and $$P(U_2)$$ will be different. Instead of $\frac{1}{2}$ and $\frac{1}{2}$ they will be $\frac{2}{3}$ and $\frac{1}{3}$ respectively. So the solution should be found using the same method just replacing those values, correct?

Jameson said:
I think I solved it now. My above idea was wrong.

What I need to find is $$P(W_2|W_1)=\frac{P(W_2 \cap W_1)}{P(W_1)}$$. Both the numerator and denominator should be broken up into two cases. Once I do that I get the following:

$$P(W_2|W_1)=\frac{\frac{1}{2}\frac{1}{2}\frac{1}{2}+\frac{1}{4} \frac{1}{4}\frac{1}{2}}{\frac{1}{2}\frac{1}{2}+ \frac{1}{4}\frac{1}{2}}=\frac{5}{12}$$

Working it out mathematically:

$$\begin{aligned}
P(W_2|W_1)&=\frac {P(W_1 \wedge W_2)}{P(W_1)} \\
&= \frac {P((U_1 \wedge W_1 \wedge W_2) \vee (U_1 \wedge W_1 \wedge W_2))}{P(W_1)} \\
&= \frac {P(U_1 \wedge W_1 \wedge W_2) + P(U_1 \wedge W_1 \wedge W_2)}{P(W_1)} && \text{disjoint sum rule}\\
&= \frac {P(W_2|U_1 \wedge W_1)P(U_1 \wedge W_1) + P(W_2|U_2 \wedge W_1)P(U_2 \wedge W_1)}{P(W_1)} && \text{product rule} \\
&= \frac {\frac 4 8 \cdot \frac 4 {16} + \frac 2 8 \cdot \frac 2 {16}}{\frac 6 {16}} && \text{rule for equally likely outcomes}\\
&= \frac 5 {12} \\
\end{aligned}$$
 
Last edited:
Thank you for your reply I like Serena! :)

I am leaving now for a study session so will have to reply later but I feel like my method is correct. Also, I think you might be interpreting the problem as without replacement but it's with replacement. Again, my apologies that I can't answer in more detail now but trust me I will later tonight and really appreciate the help!

I broke down the numerator as follows: $$P(W_1 W_2)=P(W_1 W_2|U_1)P(U_1)+P(W_1 W_2|U_2)P(U_2)$$ and the numbers I wrote follow. Do you see any flaw in this reasoning?
 
Last edited:
Jameson said:
Thank you for your reply I like Serena! :)

I am leaving now for a study session so will have to reply later but I feel like my method is correct. Also, I think you might be interpreting the problem as without replacement but it's with replacement. Again, my apologies that I can't answer in more detail now but trust me I will later tonight and really appreciate the help!

I broke down the numerator as follows: $$P(W_1 W_2)=P(W_1 W_2|U_2)P(U_2)+P(W_1 W_2|U_2)P(U_2)$$ and the numbers I wrote follow. Do you see any flaw in this reasoning?

Yes. Sorry. I had just realized my mistake and corrected it.
And your reasoning is flawless (although you made a typo with $U_1$ and $U_2$ ;)).

$$P(W_1 W_2)=P(W_1 W_2|U_1)P(U_1)+P(W_1 W_2|U_2)P(U_2)$$
 
Typo fixed and we now get the same answer, $\frac{5}{12}$, so I am marking the thread solved. :)

I feel confident about my midterm tomorrow. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top