- #1
CGandC
- 326
- 34
Problem:
In a box there are ##120## balls with ## X ## of them being white and ## 120 - X ## being red for random variable ##X##.
We know that ## E[ X] = 30 ##. We are taking out ## k ## balls randomly and with returning ( we return each ball we take out, so there is equal probability for each ball every time we take out a ball ), for ## k \geq 2 ##.
Let ## Y ## be the number of white balls in the sample that was taken out.
What is the probability of the first ball being white?
Note: This was the first question of an old exam and there were more questions that were based on it in the exam later on ( so it might be the case that we don't need to use ## k ## here. ), none of them helped in inferring the reasoning for the answer to this problem.
The official answer was:
## E[ \frac{X}{120}] = \frac{1}{4} ##, hence the probability of the first ball being white is ## \frac{1}{4} ##
Question:
I tried different things, among them being attempting to use binomial ,negative-binomial, hyper-geometric distributions in the problem, but I kept getting stuck because I don't know what ## X ## is since it is a random variable.
Then I tried getting ahead with the following equations:
## E[ X] = \sum_{i=1}^{120} x P(X = x) ## , ## E[ X] = \sum_{i=1}^{120} P(X \geq i) ## , but I was unable to proceed.
Do you have any explanation for the answer? I'm unable to retrace the steps necessary to arrive to it so I can't figure out how to arrive at the answer.
Thanks in advance for any help!
In a box there are ##120## balls with ## X ## of them being white and ## 120 - X ## being red for random variable ##X##.
We know that ## E[ X] = 30 ##. We are taking out ## k ## balls randomly and with returning ( we return each ball we take out, so there is equal probability for each ball every time we take out a ball ), for ## k \geq 2 ##.
Let ## Y ## be the number of white balls in the sample that was taken out.
What is the probability of the first ball being white?
Note: This was the first question of an old exam and there were more questions that were based on it in the exam later on ( so it might be the case that we don't need to use ## k ## here. ), none of them helped in inferring the reasoning for the answer to this problem.
The official answer was:
## E[ \frac{X}{120}] = \frac{1}{4} ##, hence the probability of the first ball being white is ## \frac{1}{4} ##
Question:
I tried different things, among them being attempting to use binomial ,negative-binomial, hyper-geometric distributions in the problem, but I kept getting stuck because I don't know what ## X ## is since it is a random variable.
Then I tried getting ahead with the following equations:
## E[ X] = \sum_{i=1}^{120} x P(X = x) ## , ## E[ X] = \sum_{i=1}^{120} P(X \geq i) ## , but I was unable to proceed.
Do you have any explanation for the answer? I'm unable to retrace the steps necessary to arrive to it so I can't figure out how to arrive at the answer.
Thanks in advance for any help!