- #1
stephenranger
- 36
- 1
Homework Statement
Three friends play a game in which one picks blind–folded from a bag containing white and
black balls. In the bag there are four black balls and one white ball. The player
whose turn it is picks one ball. If the ball is white the player has won; otherwise
the ball is returned to the bag and the next player gets the turn. The turn rotates
until the white ball is picked.
a) What is the probability that the game ends before any of the players has
picked twice?
b) Let the players be A, B, and C, in this order. What is each player’s probability
of winning the game?
Homework Equations
The Attempt at a Solution
a)
The probability of the 1st player picks the white ball is P1 = 1/5
The probability of the 1st player picks a black ball and then the 2nd player picks the white ball is P2 = (4/5)x(1/5)
The probability of the 1st player picks a black ball and then the 2nd player picks a black ball and then the 3rd picks the white ball is P3 = (4/5)x(4/5)x(1/5)
So the probability that the game ends before any of the players has picked twice is: P = P1+P2+P3 = (1/5) + (4/5)x(1/5) + (4/5)x(4/5)x(1/5) = 61/125 = 0.488
b)
The probability that A picks the white ball is PA = 1/5
The probability that B picks the white ball is PB = (4/5)x(1/5)
The probability that C picks the white ball is PC = (4/5)x(4/5)x(1/5)