- #1
Trollfaz
- 141
- 14
I have a random variable X in range(0,n) where n<1, with a uniform distribution
Then the probability of sample space S=n x P(X=x) x<=n which must be 1
Manipulating the equation P(X=x)=1/n >1
Then this violates the fundamental law of probability which says that any probability must be at most 1.
How do we resolve this paradox here
Then the probability of sample space S=n x P(X=x) x<=n which must be 1
Manipulating the equation P(X=x)=1/n >1
Then this violates the fundamental law of probability which says that any probability must be at most 1.
How do we resolve this paradox here