- #1
alexmahone
- 304
- 0
Let $A_1$, $A_2$, and $A_3$ be three arbitrary events. Show that the probability that exactly one of these three events will occur is
$\Pr(A_1)+\Pr(A_2)+\Pr(A_3)-2\Pr(A_1\cap A_2)-2\Pr(A_2\cap A_3)-2\Pr(A_1\cap A_3)+3\Pr(A_1\cap A_2\cap A_3)$
My attempt:
The required probability$=\Pr(A_1\cap A_2^c\cap A_3^c)+\Pr(A_1^c\cap A_2\cap A_3^c)+\Pr(A_1^c\cap A_2^c\cap A_3)$
$\Pr(A_1\cap A_2^c\cap A_3^c)=\Pr(A_1\cap(A_2\cup A_3)^c)$
$=\Pr(A_1)-\Pr(A_1\cap(A_2\cup A_3))$
How do I proceed?
$\Pr(A_1)+\Pr(A_2)+\Pr(A_3)-2\Pr(A_1\cap A_2)-2\Pr(A_2\cap A_3)-2\Pr(A_1\cap A_3)+3\Pr(A_1\cap A_2\cap A_3)$
My attempt:
The required probability$=\Pr(A_1\cap A_2^c\cap A_3^c)+\Pr(A_1^c\cap A_2\cap A_3^c)+\Pr(A_1^c\cap A_2^c\cap A_3)$
$\Pr(A_1\cap A_2^c\cap A_3^c)=\Pr(A_1\cap(A_2\cup A_3)^c)$
$=\Pr(A_1)-\Pr(A_1\cap(A_2\cup A_3))$
How do I proceed?
Last edited: