Problem 1.136 from Irodov's book

  • Thread starter issacnewton
  • Start date
  • Tags
    Book
In summary, the conversation is discussing a problem from Irodov's book on general physics and trying to understand the solution provided on a website. There is confusion about the assumptions made in the solution and the equation used to calculate velocity at the highest point of the trajectory. It is clarified that the horizontal component of the velocity is needed because at the highest point of the trajectory, the vertical component is zero. The conversation also mentions the importance of treating horizontal and vertical motion separately for projectile motion.
  • #1
issacnewton
1,019
35
Hello

I am attaching a problem from Irodov's book "Problems in general physics". There is also a website where the solutions are given. I am just trying to understand the solution. Solution is given at http://irodovsolutionsmechanics.blogspot.com/2008_05_03_archive.html

Now in the problem I assumed that the particle keeps in touch with the trajectory for all the half circle. I think its a wrong assumption. Also the problem doesn't mention if the body starts rolling from the rest. does it matter ? In the solution given I have not understood how he got equation 1. If we use conservation of energy , then we will need to take care of the kinetic energy at the bottom. He doesn't use that kinetic energy at all. Also the problem just asks for the velocity of the body after breaking off the groove but this guy calculates the horizontal component of the velocity. Even at the back of the book, the horizontal component of the velocity is given. can somebody clarify ?

Issac N
 

Attachments

  • 1.136.jpg
    1.136.jpg
    34 KB · Views: 467
Physics news on Phys.org
  • #2
The body does break off the groove. It has to have a certain minimum velocity at the base to complete a circle. Assuming a complete circle is incorrect.
The eqn.1 does use k.e at the bottom but that is also equal to g.p.e at the top of the hill.
They also have mentioned zero velocity at the top - look what they say-"starts sliding".
And they use the horizontal velocity because they are originally asking for velocity at the highest point of trajectory.
 
  • #3
ok the equation 1 now makes sense. but why do we need to take horizontal component
of the velocity. that's the answer at the end of the book too. at the time of breaking from the groove, v = sqrt(gh/3) but the book gives v= (2/3) sqrt(gh/3)... as given in the above solution.

Issac n
 
  • #4
IssacNewton said:
but why do we need to take horizontal component
of the velocity.
Because at the highest point of the trajectory the vertical component will be zero.
at the time of breaking from the groove, v = sqrt(gh/3)
How did you derive that?
 
  • #5
IssacNewton said:
ok the equation 1 now makes sense. but why do we need to take horizontal component
of the velocity. that's the answer at the end of the book too. at the time of breaking from the groove, v = sqrt(gh/3) but the book gives v= (2/3) sqrt(gh/3)... as given in the above solution.

Issac n
In the solution of problem, they have found the velocity of the ball in the position where the line joining the ball and the center makes an angle θ with the horizontal.
In your attachment, the velocity at the highest point of the semicircle is asked.
 
  • #6
Doc Al said:
Because at the highest point of the trajectory the vertical component will be zero.

How did you derive that?

Doc Al

if you see the solution provided at the link, when the object breaks off the groove, the normal reaction N becomes zero .so plugging N=0 in eq. 2 we can solve for sin(theta). also the problem asks to find the velocity at the highest point of the trajectory of the object, not the highest point of the half-circle. please see the solution link given by me. i didn't understand the last part where he says v= (2/3) sqrt(gh/3)

Issac N
 
  • #7
IssacNewton said:
Doc Al

if you see the solution provided at the link, when the object breaks off the groove, the normal reaction N becomes zero .so plugging N=0 in eq. 2 we can solve for sin(theta). also the problem asks to find the velocity at the highest point of the trajectory of the object, not the highest point of the half-circle. please see the solution link given by me.
My bad. I misread what you wrote.

i didn't understand the last part where he says v= (2/3) sqrt(gh/3)
You have the velocity at the break point. Find its horizontal component. That won't change as the object reaches its highest point.

Once the object leaves the surface, it's a free projectile under gravity. For a projectile, treat horizontal and vertical motion separately. Only the vertical speed changes as the object rises; the horizontal speed is constant. At the top, the vertical component is zero.
 
Last edited:
  • #8
Will you please post the full text of the problem?
 
  • #9
rl.bhat said:
Will you please post the full text of the problem?
See the attachment in post #1.
 
  • #10
Doc Al said:
See the attachment in post #1.
OK. Got it.
 
  • #11
Doc Al said:
My bad. I misread what you wrote.


You have the velocity at the break point. Find its horizontal component. That won't change as the object reaches its highest point.

Once the object leaves the surface, it's a free projectile under gravity. For a projectile, treat horizontal and vertical motion separately. Only the vertical speed changes as the object rises; the horizontal speed is constant. At the top, the vertical component is zero.

thanks... makes sense now
 

Related to Problem 1.136 from Irodov's book

1. What is Problem 1.136 from Irodov's book?

Problem 1.136 from Irodov's book is a physics problem from the book "Problems in General Physics" by I.E. Irodov. It is a well-known problem among students studying physics and is often used in exams and competitions.

2. What is the difficulty level of Problem 1.136?

The difficulty level of Problem 1.136 is considered to be advanced or challenging. It requires a solid understanding of basic physics principles and the ability to apply them to solve complex problems.

3. How can I approach solving Problem 1.136?

To solve Problem 1.136, it is important to carefully read and understand the given conditions and then break the problem down into smaller, more manageable steps. It also helps to have a good grasp of mathematical concepts and problem-solving techniques.

4. Are there any tips or strategies for solving Problem 1.136?

One helpful strategy for solving Problem 1.136 is to draw a diagram or sketch to visualize the problem. It is also a good idea to try different approaches or methods if one approach is not working. Additionally, checking your answer and understanding the solution can also aid in solving the problem.

5. Where can I find the solution to Problem 1.136?

The solution to Problem 1.136 can be found in the same book or in various online resources such as forums and study guides. It is important to note that while finding the solution can be helpful, it is essential to understand the process and reasoning behind it rather than just memorizing the answer.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
647
Replies
1
Views
820
  • Introductory Physics Homework Help
Replies
7
Views
2K
  • Introductory Physics Homework Help
Replies
29
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
376
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
32
Views
2K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
565
  • Introductory Physics Homework Help
2
Replies
56
Views
2K
Back
Top