- #1
- 2,629
- 2,239
Homework Statement
This is from Srednicki's QFT book, problem 2.9a:
Let ##\Lambda = 1+\delta\omega## in the equation:
$$ U(\Lambda)^{-1} \partial^{\mu}\varphi(x) U(\Lambda) = \Lambda^{\mu}{}_{\rho} \overline{\partial^{\rho}}\varphi(\Lambda^{-1}x) $$
where ##\overline{\partial^{\rho}}## denotes differentiation with respect to ##\overline{x^{\rho}} = \Lambda^{\sigma}{}_{\rho} x##. Show that
$$[\partial^{\rho}\varphi(x),M^{\mu \nu}] = \mathcal{L}^{\mu \nu} \partial^{\rho}\varphi(x) + (S^{\mu \nu}_V)^{\rho}{}_{\tau}\partial^{\tau}\varphi(x)$$
Homework Equations
$$U(1+\delta\omega) = I + \frac{i}{2\hbar}\delta\omega_{\mu \nu}M^{\mu \nu}$$
$$\Lambda^{\rho}{}_{\tau} = \delta^{\rho}{}_{\tau} + \frac{i}{2\hbar}\delta\omega_{\mu \nu}(S^{\mu \nu}_V)^{\rho}{}_{\tau}$$
$$\overline{\partial^{\rho}} = \Lambda^{\rho}{}_{\sigma} \partial^{\sigma}$$
$$\mathcal{L}^{\mu \nu} = \frac{\hbar}{i}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})$$
$$(S^{\mu \nu}_V)^{\rho}{}_{\tau} = \frac{\hbar}{i}(g^{\mu \rho}\delta^{\nu}{}_{\tau} - g^{\nu \rho}\delta^{\mu}{}_{\tau})$$
The Attempt at a Solution
The lhs of the first equation is:
$$U(1-\delta\omega) \partial^{\alpha}\varphi(x) U(1+\delta\omega) = (I - \frac{i}{2\hbar}\delta\omega_{\mu \nu}M^{\mu \nu})\partial^{\alpha}\varphi(x)(I + \frac{i}{2\hbar}\delta\omega_{\mu \nu}M^{\mu \nu})$$
To first order in ##\delta\omega##, this is:
$$\partial^{\alpha}\varphi(x) + \frac{i}{2\hbar}\delta\omega_{\mu \nu}[\partial^{\alpha}\varphi(x),M^{\mu \nu}]$$
The rhs of the first equation is:
$$\Lambda^{\alpha}{}_{\rho} \Lambda^{\rho}{}_{\sigma}\partial^{\sigma}\varphi(x-x\delta\omega) =(\delta^{\alpha}{}_{\rho} + \frac{i}{2\hbar}\delta\omega_{\tau \nu}(S^{\tau \nu}_V)^{\alpha}{}_{\rho})(\delta^{\rho}{}_{\sigma} + \frac{i}{2\hbar}\delta\omega_{\tau \nu}(S^{\tau \nu}_V)^{\rho}{}_{\sigma})\partial^{\sigma}\varphi(x-x\delta\omega) $$
To first order in ##\delta\omega_{\tau \nu}##, we have:
$$\partial^{\alpha}\varphi(x-x\delta\omega) +\frac{i}{\hbar}\delta\omega_{\tau \nu}(S^{\tau \nu}_V)^{\alpha}{}_{\sigma}\partial^{\sigma}\varphi(x-x\delta\omega) $$
Expanding ##\varphi(x-x\delta\omega)## to first order gives ##\varphi(x) + \delta\omega_{\mu \nu}x^{\mu}\partial^{\nu}\varphi(x) = \varphi(x) + \frac{1}{2}\delta\omega_{\mu \nu}(x^{\mu}\partial^{\nu}-x^{\nu}\partial^{\mu})\varphi(x)=\varphi(x) + \frac{i}{2\hbar}\delta\omega_{\mu \nu}\mathcal{L}^{\mu\nu}\varphi(x)##, by the antisymmetry of ##\delta\omega_{\mu \nu}##. Substituting this into the above equation and retaining terms to first order in ##\delta\omega## gives:
$$\frac{i}{2\hbar}\delta\omega_{\mu \nu}[\partial^{\alpha}\varphi(x),M^{\mu \nu}] = \frac{i}{2\hbar}\delta\omega_{\mu \nu}\partial^{\alpha}(\mathcal{L}^{\mu\nu}\varphi(x)) + \frac{i}{\hbar}\delta\omega_{\mu \nu}(S^{\mu \nu}_V)^{\alpha}{}_{\sigma}\partial^{\sigma}\varphi(x)$$
Equating terms from each of the indices of ##\delta\omega_{\mu\nu}## gives us:
$$[\partial^{\alpha}\varphi(x),M^{\mu \nu}] =\mathcal{L}^{\mu\nu}\partial^{\alpha}\varphi(x) + 2(S^{\mu \nu}_V)^{\alpha}{}_{\sigma}\partial^{\sigma}\varphi(x)$$
This is almost right, but why am I getting an extra factor of two in front of the ##(S^{\mu \nu}_V)^{\alpha}{}_{\sigma}## term?
EDIT: I'm an idiot. ##\partial^{\alpha}(\mathcal{L}^{\mu\nu}\varphi(x)) \ne \mathcal{L}^{\mu\nu}\partial^{\alpha}\varphi(x)##. I'll work on it a little more.