- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Let $a,\,b,\,c$ and $d$ be four non-negative real numbers satisfying the condition
$2(ab+ac+ad+bc+bd+cd)+abc+abd+acd+bcd=16$
Prove that
$a+b+c+d\ge \dfrac{2}{3}(ab+ac+ad+bc+bd+cd)$
and determine when equality occurs.
-----
-----
Let $a,\,b,\,c$ and $d$ be four non-negative real numbers satisfying the condition
$2(ab+ac+ad+bc+bd+cd)+abc+abd+acd+bcd=16$
Prove that
$a+b+c+d\ge \dfrac{2}{3}(ab+ac+ad+bc+bd+cd)$
and determine when equality occurs.
-----