- #1
yavanna
- 12
- 0
Can anyone give me some advice about this problem? Thanks.
Let [tex]\lim_{n \to \infty}X_{n}=X[/tex] a.s.
And let [tex]Y=\sup_n|X_{n}-X|[/tex].
Let [tex]\lim_{n \to \infty}X_{n}=X[/tex] a.s.
And let [tex]Y=\sup_n|X_{n}-X|[/tex].
- Proove that [tex]Y<\infty[/tex] a.s.
- Let [tex]Q[/tex] a new probability measure defined as it follows:
[tex]\displaystyle Q(A)=\frac{1}{c} \mathbb{E}\!\left[1_{A} \frac{1}{1+Y}\right][/tex], where [tex]\displaystyle c=\mathbb{E}\!\left[\frac{1}{1+Y}\right][/tex].
Proove that [tex]X_{n} \rightarrow X[/tex] (in [tex]L_{1}(Q)[/tex]).
Last edited: