- #1
issacnewton
- 1,041
- 37
Hello
Here is the problem statement.
Let $X=Y = \{x\in \mathbb{R}\; :0<x<1\}$ . Define $ h\;:X\times Y\longrightarrow \mathbb{R}$
by $h(x,y)=2x+y$. For each $x\in X$, find $f(x) = \sup\{h(x,y)\; : y\in Y\}$.
Here is my attempt. I let $S=\{h(x,y)\; : y\in Y\}$. I claim that $\sup S = 2x+1$. To prove
this I first let x be arbitrary since we have to prove this $\forall x\in X$. And next thing
I have to prove is that $2x+1$ is the upper bound of $S$. I could do that. Next I let
$t$ be any other upper bound of $S$. I have to prove that $2x+1 \leqslant t$. Here
I start by assuming the negative. Assume $ t < 2x+1$. And now I am supposed to reach
a contradiction somewhere. Now since $t$ is the upper bound of $\{h(x,y)\; : y\in Y\}$, and since
$0<y<1$, I can claim that $2x+0.9 \leqslant t < 2x+1$, which means $0.9\leqslant t-2x <1$.
So we have $0<t-2x<1$. So I found a number which is between $0$ and $1$. I could exploit this
to come up with some contradiction. But I am stuck here. Any guidance will help.
Thanks
Here is the problem statement.
Let $X=Y = \{x\in \mathbb{R}\; :0<x<1\}$ . Define $ h\;:X\times Y\longrightarrow \mathbb{R}$
by $h(x,y)=2x+y$. For each $x\in X$, find $f(x) = \sup\{h(x,y)\; : y\in Y\}$.
Here is my attempt. I let $S=\{h(x,y)\; : y\in Y\}$. I claim that $\sup S = 2x+1$. To prove
this I first let x be arbitrary since we have to prove this $\forall x\in X$. And next thing
I have to prove is that $2x+1$ is the upper bound of $S$. I could do that. Next I let
$t$ be any other upper bound of $S$. I have to prove that $2x+1 \leqslant t$. Here
I start by assuming the negative. Assume $ t < 2x+1$. And now I am supposed to reach
a contradiction somewhere. Now since $t$ is the upper bound of $\{h(x,y)\; : y\in Y\}$, and since
$0<y<1$, I can claim that $2x+0.9 \leqslant t < 2x+1$, which means $0.9\leqslant t-2x <1$.
So we have $0<t-2x<1$. So I found a number which is between $0$ and $1$. I could exploit this
to come up with some contradiction. But I am stuck here. Any guidance will help.
Thanks