- #1
cbarker1
Gold Member
MHB
- 349
- 23
Problem (c) for Discrete Value Ring for a unit
I am stuck in the middle of a proof. Here is the background information from Dummit and Foote Abstract Algebra 2nd ed.:
Let $K$ be a field. A discrete valuation on $K$ on a function $\nu$: $K^{\times} \to \Bbb{Z}$ satisfying
From part b.) Prove that nonzero element $x\in K$ either $x$ or $x^{-1}$ is in $R$.
Proof: Suppose $x\in K^{\times}$. Assume $x\notin R$. Then $\nu(x)<0$, we have
\begin{align*}
&0=\nu(1)\\
&=\nu(xx^{-1})\\
&=\nu(x)+\nu(x^{-1})
\end{align*}
the last line implies $\nu(x^{-1})>0$. Therefore, $x^{-1} \in R$. QED
Here is the question: Prove that an element $x$ is a unit of $R$ if and only if $\nu(x)=0$.
Proof: Suppose $x$ is a unit of $R$. By part (b), $\nu(x)>0$...
Thanks
CBarker1
I am stuck in the middle of a proof. Here is the background information from Dummit and Foote Abstract Algebra 2nd ed.:
Let $K$ be a field. A discrete valuation on $K$ on a function $\nu$: $K^{\times} \to \Bbb{Z}$ satisfying
- $\nu(a\cdot b)=\nu(a)+\nu(b)$ [i.e. $\nu$ is a homomorphism from the multiplication group of nonzero elements of $K$ to $\Bbb{Z}$]
- $\nu$ is surjective, and
- $\nu(x+y)\ge \min{[\nu(x),\nu(y)]}$, for all $x,y\in K^{\times}$ with $x+y\ne 0$
From part b.) Prove that nonzero element $x\in K$ either $x$ or $x^{-1}$ is in $R$.
Proof: Suppose $x\in K^{\times}$. Assume $x\notin R$. Then $\nu(x)<0$, we have
\begin{align*}
&0=\nu(1)\\
&=\nu(xx^{-1})\\
&=\nu(x)+\nu(x^{-1})
\end{align*}
the last line implies $\nu(x^{-1})>0$. Therefore, $x^{-1} \in R$. QED
Here is the question: Prove that an element $x$ is a unit of $R$ if and only if $\nu(x)=0$.
Proof: Suppose $x$ is a unit of $R$. By part (b), $\nu(x)>0$...
Thanks
CBarker1
Last edited: