Problem in apparent contradiction in Euler's Identity?

In summary: Instead, you must constantly remember that any time you have a power of i, it will repeat every four powers.In summary, the conversation discusses a "proof" that seems to contradict Euler's Identity, but it fails to consider the fact that the exponential representation of a complex number is not unique. This is due to the multi-valued nature of ln(z) when z is a complex number. The conversation also mentions a domain restriction for the logarithm function and the need to handle arithmetic with complex numbers differently than with real numbers.
  • #1
cwbullivant
60
0
I've worked with Euler's Identity for physics applications quite a few times, but ran into a "proof" of a contradiction in it, which I can't seem to find a flaw in (the only time I've ever had to do any proofs was in high school). I've derived Euler's equation in two different ways in past classes, so I know it works, but I'm at a bit of a loss here.

## e^{i\theta} = cos{\theta} + isin{\theta} ##

Set ##\theta = 2\pi ##

## e^{2\pi i} = cos{2\pi} + isin{2\pi} ##

## e^{2\pi i} = 1 ##

Take the natural log:

## ln{e^{2\pi i}} = ln{1} ##

## 2\pi i = 0 ##

## i = sqrt{-1} = 0 ##

## -1 = 0 ##

I think the problem was in using the natural log up there, but I'm not positive.
 
Mathematics news on Phys.org
  • #2
in general we cannot conclude arguments are equal from the fact function values are
$$\require{cancel}\mathrm{f}(x)=\mathrm{f}(y)\cancel\implies x=y\\
\text{for example another related common error}\\
(-1)^2=1^2\cancel\implies -1=1
$$
 
  • #3
The logarithm of a complex number is usually defined such that it gives you ##\phi## where ##-\pi \lt \phi \le \pi##. So using this definition, ##\ln e^{2\pi i}=0## and not ##2\pi i##. You have assumed that taking the logarithm simply gives you the exponent you had in the beginning, but this is untrue. Using complex numbers, there is no such general function as "getting the exponent", like there is not a general function of getting ##x## back from ##x^2##. One could also say that ##(-1)^2=1^2## therefore ##-1=1##, but this is wrong.

You are basically saying that ##e^{0}=e^{2\pi i}=e^{4\pi i}=e^{6\pi i}## and therefore ##0=2 \pi i= 4 \pi i=6 \pi i## and so on, but this is untrue. Because all the exponents give the same answer, how should the logarithm function know which exponent you want or which one you had at the beginning? It cannot know that, therefore it is defined to give ##-\pi \lt \phi \le \pi## to make it consistent and the ##2 \pi i## value you got from it is false (using the common definition).
 
  • Like
Likes FactChecker
  • #4
cwbullivant said:
I've worked with Euler's Identity for physics applications quite a few times, but ran into a "proof" of a contradiction in it, which I can't seem to find a flaw in (the only time I've ever had to do any proofs was in high school). I've derived Euler's equation in two different ways in past classes, so I know it works, but I'm at a bit of a loss here.

## e^{i\theta} = cos{\theta} + isin{\theta} ##

Set ##\theta = 2\pi ##

## e^{2\pi i} = cos{2\pi} + isin{2\pi} ##

## e^{2\pi i} = 1 ##

Take the natural log:

## ln{e^{2\pi i}} = ln{1} ##

## 2\pi i = 0 ##

## i = sqrt{-1} = 0 ##

## -1 = 0 ##

I think the problem was in using the natural log up there, but I'm not positive.

The problem is that ln(z) is multi-valued, like many complex functions.

If z = x + iy = r e , then ln (z) = ln (r) + iθ = ln |z| + i Arg (z)

http://en.wikipedia.org/wiki/Complex_logarithm

The 'proof' you listed doesn't seem to account for the fact that the exponential representation of a complex number is not unique.
 
  • #5
SteamKing said:
The problem is that ln(z) is multi-valued, like many complex functions.

If z = x + iy = r e , then ln (z) = ln (r) + iθ = ln |z| + i Arg (z)

http://en.wikipedia.org/wiki/Complex_logarithm

The 'proof' you listed doesn't seem to account for the fact that the exponential representation of a complex number is not unique.

Working with that, would it be:

## z = e^{2\pi i}, r = 1 ##

So ## |z| = e^{2\pi i}e^{-2\pi i} = e^{2\pi i - 2\pi i} = e^{0} = 1 ##

Then ## Ln{(e^{2\pi i})} = ln{|z|} + i Arg(z) = ln{1} + 2\pi i = 2\pi i ##

Which doesn't seem to be any help, assuming it's actually possible to equate ## Ln{|z|} = ln(1) ## at all. I'm guessing this is why chingel above mentioned a domain restriction.

I took a math methods class last semester, and somehow managed to forget the section on complex variables altogether. I got a similar formula from my notes there:

## Ln{|z|} = ln{|z|} + i({\theta + 2\pi k}) ##, where the case k = 0 is called the principle logarithm. The notes don't say anything about a domain restriction, so I'm guessing this formulation is the "Riemann surface" method. That makes it pretty obvious that a complex logarithm isn't single-valued. Since it's multi-valued, and ## ln 1 ## is single valued, can we simply not equate the natural log of the complex number with ln(1) at all? This doesn't seem quite right either, as I can imagine z = 1 + i(0), and do:

## Ln(1) = ln(1) + i(0 + 2\pi k) ##
 
  • #6
Yes, just as e2πi = 1, so too can one say that e2kπi = 1, for k = 1, 2, 3, etc.

If i2 ≡ -1, we can't conclude that because e2πi = 1 and log (e2πi) = 2πi = log (1) = 0, which would lead to the contradiction that i2 = 02 = 0, which it clearly is not, rather than i2 = -1.

Anytime i pops up, you can't handle the arithmetic the same as you do with real numbers.
 

FAQ: Problem in apparent contradiction in Euler's Identity?

What is Euler's Identity?

Euler's Identity is a mathematical equation that relates five fundamental mathematical constants: 0, 1, pi, e, and i. It is written as e + 1 = 0 and is considered one of the most elegant and profound equations in mathematics.

What is the problem in apparent contradiction in Euler's Identity?

The problem in apparent contradiction in Euler's Identity is that it combines three seemingly unrelated mathematical concepts: exponential functions, trigonometric functions, and imaginary numbers. This can be confusing and counterintuitive for many people.

Why is Euler's Identity important?

Euler's Identity is important because it shows the deep connections between seemingly unrelated mathematical concepts. It also has many important applications, such as in signal processing, quantum mechanics, and complex analysis.

How is Euler's Identity derived?

Euler's Identity can be derived using Taylor series expansions for the exponential and trigonometric functions and applying the definition of imaginary numbers. It is a result of the fundamental properties of these mathematical concepts.

What are some common misconceptions about Euler's Identity?

One common misconception is that Euler's Identity is simply a coincidence or a mathematical trick. However, it is a fundamental and elegant representation of mathematical relationships. Another misconception is that it has no practical applications, when in fact it is used in various fields of science and engineering.

Similar threads

Replies
1
Views
991
Replies
6
Views
2K
Replies
5
Views
1K
Replies
29
Views
2K
Replies
5
Views
2K
Replies
2
Views
3K
Back
Top