MHB Problem involving arithmetic and geometric mean.

AI Thread Summary
For three positive numbers \(a, b, c\) such that \(a + b + c = 1\), it is proven that \(ab^2c^3 \leq \frac{1}{432}\). The proof utilizes the arithmetic mean (AM) and geometric mean (GM) inequality by considering the numbers \(a, \frac{b}{2}, \frac{b}{2}, \frac{c}{3}, \frac{c}{3}, \frac{c}{3}\). The AM is calculated to be \(\frac{1}{6}\), while the GM is expressed in terms of \(ab^2c^3\). The inequality \(AM \geq GM\) leads to the conclusion that \(\frac{2^2 3^3}{6^6} \geq ab^2c^3\), confirming the original statement. This establishes a clear relationship between the means and the product of the variables.
DrunkenOldFool
Messages
20
Reaction score
0
$a,b,c$ are any three positive numbers such that $a+b+c=1$. Prove that

$$ab^2c^3 \leq \frac{1}{432}$$
 
Mathematics news on Phys.org
Consider the 6 numbers

$$a,\frac{b}{2},\frac{b}{2},\frac{c}{3},\frac{c}{3},\frac{c}{3}$$

The arithmetic mean of these numbers is

$\displaystyle AM = \dfrac{a+\frac{b}{2}+\frac{b}{2}+\frac{c}{3}+\frac{c}{3}+\frac{c}{3}}{6}$

$=\frac{1}{6}$

Similarly, you can calculate the Geometric Mean.

$\displaystyle GM=\left( \frac{b}{2}\frac{b}{2}\frac{c}{3}\frac{c}{3}\frac{c}{3}\right)^{\frac{1}{6}}=\left( \frac{ab^2 c^3}{2^2 3^3}\right)^{1 \over 6}$

$AM \geq GM$
$\displaystyle \frac{1}{6} \geq \left( \frac{ab^2 c^3}{2^2 3^3}\right)^{1 \over 6}$

$\displaystyle \Rightarrow \frac{2^23^3}{6^6} \geq ab^2c^3$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top