- #1
issacnewton
- 1,041
- 37
HelloI want to prove the following.
Let \(X\) and \(Y\) be two sequences,and \(XY\) converges. Then prove that
\(X_mY\) also converges,where
\[ X_m = \mbox{ m-tail of X } = (x_{m+n}\;:\; n\in \mathbb{N}) \]
Here is my proof.
let \(\lim\;(XY) = a \) . Then we have
\[ \forall \varepsilon >0\; \exists K_1 \in \mathbb{N} \;\forall n\geqslant K_1 \]
\[ |x_ny_n - a| < \varepsilon \]
Now let \(K = \max(K_1,\; m+1) \). The \( \forall n \geqslant K \) we have
\[|x_n y_n - a| < \varepsilon \].
But now all the \( (x_n) \) terms are values from the sequence \(X_m\). So
we have proven that
\[ \forall \varepsilon >0 \;\exists K \in \mathbb{N} \;\forall n\geqslant K \]
\[ |x_ny_n - a| < \varepsilon \]
where \( x_n\) values are from sequence \(X_m\). This proves that
\[ \lim(X_m Y) = a \]which proves that \(X_mY\) also converges. Let me know if this is right
Thanks
Let \(X\) and \(Y\) be two sequences,and \(XY\) converges. Then prove that
\(X_mY\) also converges,where
\[ X_m = \mbox{ m-tail of X } = (x_{m+n}\;:\; n\in \mathbb{N}) \]
Here is my proof.
let \(\lim\;(XY) = a \) . Then we have
\[ \forall \varepsilon >0\; \exists K_1 \in \mathbb{N} \;\forall n\geqslant K_1 \]
\[ |x_ny_n - a| < \varepsilon \]
Now let \(K = \max(K_1,\; m+1) \). The \( \forall n \geqslant K \) we have
\[|x_n y_n - a| < \varepsilon \].
But now all the \( (x_n) \) terms are values from the sequence \(X_m\). So
we have proven that
\[ \forall \varepsilon >0 \;\exists K \in \mathbb{N} \;\forall n\geqslant K \]
\[ |x_ny_n - a| < \varepsilon \]
where \( x_n\) values are from sequence \(X_m\). This proves that
\[ \lim(X_m Y) = a \]which proves that \(X_mY\) also converges. Let me know if this is right
Thanks