- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem!
-----
Problem: Let $g\in GL_4(K)$ be the permutation matrix
\[g=\begin{pmatrix}0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 \end{pmatrix}.\]
Compute the characteristic polynomial $P_{\text{char}}^g$. Compute the minimal polynomial $P_{\text{min}}^g$ when $K=\mathbb{F}_2$, when $K=\mathbb{F}_3$, and when $K=\mathbb{F}_5$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Problem: Let $g\in GL_4(K)$ be the permutation matrix
\[g=\begin{pmatrix}0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 \end{pmatrix}.\]
Compute the characteristic polynomial $P_{\text{char}}^g$. Compute the minimal polynomial $P_{\text{min}}^g$ when $K=\mathbb{F}_2$, when $K=\mathbb{F}_3$, and when $K=\mathbb{F}_5$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!