- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem!
-----
Problem: Let $A$ and $B$ be subsets of a metric space $(X,\rho)$. Define
\[\mathrm{dist}(A,B) = \inf\{\rho(u,v)\mid u\in A,\,v\in B\}.\]
If $A$ is compact and $B$ is closed, show that $A\cap B=\emptyset$ if and only if $\mathrm{dist}(A,B)>0$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Problem: Let $A$ and $B$ be subsets of a metric space $(X,\rho)$. Define
\[\mathrm{dist}(A,B) = \inf\{\rho(u,v)\mid u\in A,\,v\in B\}.\]
If $A$ is compact and $B$ is closed, show that $A\cap B=\emptyset$ if and only if $\mathrm{dist}(A,B)>0$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!