- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem!
-----
Problem: Prove for any $\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\in\mathbb{R}^3$,
\[(\mathbf{a}\times\mathbf{b}) \cdot (\mathbf{c}\times\mathbf{d}) = \begin{vmatrix}\mathbf{a}\cdot\mathbf{c} & \mathbf{b}\cdot\mathbf{c}\\ \mathbf{a}\cdot\mathbf{d} & \mathbf{b}\cdot\mathbf{d}\end{vmatrix}.\]
-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Problem: Prove for any $\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\in\mathbb{R}^3$,
\[(\mathbf{a}\times\mathbf{b}) \cdot (\mathbf{c}\times\mathbf{d}) = \begin{vmatrix}\mathbf{a}\cdot\mathbf{c} & \mathbf{b}\cdot\mathbf{c}\\ \mathbf{a}\cdot\mathbf{d} & \mathbf{b}\cdot\mathbf{d}\end{vmatrix}.\]
-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!