- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here's this week's problem!
__________________
Problem. Suppose $S$ is a partially ordered set such that for some positive integer $n$, every finite subset of $S$ is a union of $n$ chains. Prove that $S$ is itself the union of $n$ chains.
__________________
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
__________________
Problem. Suppose $S$ is a partially ordered set such that for some positive integer $n$, every finite subset of $S$ is a union of $n$ chains. Prove that $S$ is itself the union of $n$ chains.
__________________
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!