- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Find the least number $A$ such that for any two squares of combined area $1$, a rectangle of area $A$ exists such that the two squares can be packed into the rectangle (without interior overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Find the least number $A$ such that for any two squares of combined area $1$, a rectangle of area $A$ exists such that the two squares can be packed into the rectangle (without interior overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!