- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
Here is this week's POTW:
-----
Let $C_1$ and $C_2$ be circles whose centers are 10 units apart, and whose radii are 1 and 3. Find, with proof, the locus of all points $M$ for which there exists points $X$ on $C_1$ and $Y$ on $C_2$ such that $M$ is the midpoint of the line segment $XY$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $C_1$ and $C_2$ be circles whose centers are 10 units apart, and whose radii are 1 and 3. Find, with proof, the locus of all points $M$ for which there exists points $X$ on $C_1$ and $Y$ on $C_2$ such that $M$ is the midpoint of the line segment $XY$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!