- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Right triangle $ABC$ has right angle at $C$ and $\angle BAC =\theta$; the point $D$ is chosen on $AB$ so that $|AC|=|AD|=1$; the point $E$ is chosen on $BC$ so that $\angle CDE = \theta$. The perpendicular to $BC$ at $E$ meets $AB$ at $F$. Evaluate $\displaystyle\lim_{\theta\rightarrow 0}|EF|$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Right triangle $ABC$ has right angle at $C$ and $\angle BAC =\theta$; the point $D$ is chosen on $AB$ so that $|AC|=|AD|=1$; the point $E$ is chosen on $BC$ so that $\angle CDE = \theta$. The perpendicular to $BC$ at $E$ meets $AB$ at $F$. Evaluate $\displaystyle\lim_{\theta\rightarrow 0}|EF|$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!